Suppr超能文献

小尺度温带湖泊甲烷和二氧化碳通量的高时空分辨率观测

Methane and carbon dioxide fluxes at high spatiotemporal resolution from a small temperate lake.

机构信息

University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.

University of Copenhagen, Universitetsparken 4, 3 floor, 2100 Copenhagen, Denmark.

出版信息

Sci Total Environ. 2023 Jun 20;878:162895. doi: 10.1016/j.scitotenv.2023.162895. Epub 2023 Mar 22.

Abstract

Lakes are hotspots for CH and CO effluxes, but their magnitude and underlying drivers are still uncertain due to high spatiotemporal variation within and between lakes. We measured CH and CO fluxes at high temporal (hourly) and spatial resolution (approx. 13 m) using 24 automatic floating chambers equipped with continuously recording sensors that enabled the determination of diffusive and ebullitive gas fluxes. Additionally, we measured potential drivers such as weather patterns, water temperature, and O above the sediment. During five days in autumn 2021, we conducted measurements at 88 sites in a small, shallow eutrophic Danish Lake. CH ebullition was intense (mean 54.8 μmol m h) and showed pronounced spatiotemporal variation. Ebullition rates were highest in deeper, hypoxic water (5-7 m). Diffusive CH fluxes were 4-fold lower (mean 15.0 μmol m h) and spatially less variable than ebullitive fluxes, and significantly lower above hard sediments and submerged macrophyte stands. CO concentration in surface waters was permanently supersaturated at the mid-lake station, and diffusive fluxes (mean 919 μmol m h) tended to be higher from deeper waters and increased with wind speed. To obtain mean whole-lake fluxes within an uncertainty of 20 %, we estimated that 72 sites for CH ebullition, 39 sites for diffusive CH4 fluxes and 27 sites for diffusive CO fluxes would be required. Thus, accurate whole-lake quantification of the dominant ebullitive CH flux requires simultaneous operation of many automated floating chambers. High spatiotemporal variability challenges the identification of essential drivers and current methods for upscaling lake CH and CO fluxes. We successfully overcame this challenge by using automatic floating chambers, which offer continuous CH and CO flux measurements at high temporal resolution and, thus, are an improvement over existing approaches.

摘要

湖泊是 CH 和 CO 排放的热点,但由于湖泊内和湖泊之间存在高时空变化,其规模和潜在驱动因素仍不确定。我们使用 24 个配备连续记录传感器的自动浮动气室以高时间(每小时)和空间分辨率(约 13 m)测量 CH 和 CO 通量,从而能够确定扩散和鼓泡气体通量。此外,我们还测量了潜在的驱动因素,如天气模式、水温以及沉积物上方的 O。在 2021 年秋季的五天内,我们在丹麦一个小而浅的富营养化湖泊的 88 个地点进行了测量。CH 鼓泡作用强烈(平均 54.8 μmol m h),且表现出明显的时空变化。鼓泡速率在较深、缺氧的水中(5-7 m)最高。扩散 CH 通量低 4 倍(平均 15.0 μmol m h),空间变化比鼓泡通量小,在硬底沉积物和淹没的大型水生植物群上方明显较低。湖心站的地表水 CO 浓度永久过饱和,扩散通量(平均 919 μmol m h)往往来自较深的水域,并随风速增加而增加。为了在 20%的不确定性范围内获得整个湖泊的平均通量,我们估计需要 72 个 CH 鼓泡站点、39 个扩散 CH4 通量站点和 27 个扩散 CO 通量站点。因此,要准确量化整个湖泊的主导鼓泡 CH 通量,需要同时操作许多自动浮动气室。高时空变异性挑战了关键驱动因素的识别和当前湖泊 CH 和 CO 通量的放大方法。我们通过使用自动浮动气室成功克服了这一挑战,自动浮动气室可提供高时间分辨率的连续 CH 和 CO 通量测量,因此优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验