Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
Biochim Biophys Acta Mol Basis Dis. 2023 Jun;1869(5):166689. doi: 10.1016/j.bbadis.2023.166689. Epub 2023 Mar 21.
Heart formation requires transcriptional regulators that underlie congenital anomalies and the fetal gene program activated during heart failure. Attributing the effects of congenital heart disease (CHD) missense variants to disruption of specific protein domains allows for a mechanistic understanding of CHDs and improved diagnostics. A combined chemical and genetic approach was employed to identify novel CHD drivers, consisting of chemical screening during pluripotent stem cell (PSC) differentiation, gene expression analyses of native tissues and primary cell culture models, and the in vitro study of damaging missense variants from CHD patients. An epigenetic inhibitor of the TATA-Box Binding Protein Associated Factor 1 (TAF1) bromodomain was uncovered in an unbiased chemical screen for activators of atrial and ventricular fetal myosins in differentiating PSCs, leading to the development of a high affinity inhibitor (5.1 nM) of the TAF1 bromodomain, a component of the TFIID complex. TAF1 bromodomain inhibitors were tested for their effects on stem cell viability and cardiomyocyte differentiation, implicating a role for TAF1 in cardiogenesis. Damaging TAF1 missense variants from CHD patients were studied by mutational analysis of the TAF1 bromodomain, demonstrating a repressive role of TAF1 that can be abrogated by the introduction of damaging bromodomain variants or chemical TAF1 bromodomain inhibition. These results indicate that targeting the TAF1/TFIID complex with chemical compounds modulates cardiac transcription and identify an epigenetically-driven CHD mechanism due to damaging variants within the TAF1 bromodomain.
心脏的形成需要转录调控因子,这些因子是先天性异常和心力衰竭期间激活的胎儿基因程序的基础。将先天性心脏病 (CHD) 错义变体的影响归因于特定蛋白质结构域的破坏,可以帮助我们理解 CHD 并改善诊断。采用了一种联合的化学和遗传方法来鉴定新的 CHD 驱动因素,该方法包括在多能干细胞 (PSC) 分化过程中的化学筛选、天然组织和原代细胞培养模型的基因表达分析,以及对 CHD 患者的有害错义变体的体外研究。在对分化中的 PSCs 中的心房和心室胎儿肌球蛋白的激活剂进行无偏见的化学筛选中发现了 TATA 盒结合蛋白相关因子 1 (TAF1) 溴结构域的表观遗传抑制剂,从而开发出 TAF1 溴结构域的高亲和力抑制剂 (5.1 nM),TAF1 溴结构域是 TFIID 复合物的一个组成部分。测试了 TAF1 溴结构域抑制剂对干细胞活力和心肌细胞分化的影响,这表明 TAF1 在心脏发生中起作用。通过对 CHD 患者的 TAF1 溴结构域进行突变分析研究了 TAF1 错义变体的破坏作用,证明了 TAF1 的抑制作用可以通过引入破坏性溴结构域变体或化学 TAF1 溴结构域抑制来消除。这些结果表明,用化学化合物靶向 TAF1/TFIID 复合物可以调节心脏转录,并确定了由于 TAF1 溴结构域内的破坏性变体而导致的一种受表观遗传驱动的 CHD 机制。