Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO.
Clin Spine Surg. 2023 Apr 1;36(3):134-142. doi: 10.1097/BSD.0000000000001451. Epub 2023 Feb 28.
Prospective cohort study.
Apply a machine learning clustering algorithm to baseline imaging data to identify clinically relevant cervical spondylotic myelopathy (CSM) patient phenotypes.
A major shortcoming in improving care for CSM patients is the lack of robust quantitative imaging tools to guide surgical decision-making. Advanced diffusion-weighted magnetic resonance imaging (MRI) techniques, such as diffusion basis spectrum imaging (DBSI), may help address this limitation by providing detailed evaluations of white matter injury in CSM.
Fifty CSM patients underwent comprehensive clinical assessments and diffusion-weighted MRI, followed by DBSI modeling. DBSI metrics included fractional anisotropy, axial and radial diffusivity, fiber fraction, extra-axonal fraction, restricted fraction, and nonrestricted fraction. Neurofunctional status was assessed by the modified Japanese Orthopedic Association, myelopathic disability index, and disabilities of the arm, shoulder, and hand. Quality-of-life was measured by the 36-Item Short Form Survey physical component summary and mental component summary. The neck disability index was used to measure self-reported neck pain. K-means clustering was applied to baseline DBSI measures to identify 3 clinically relevant CSM disease phenotypes. Baseline demographic, clinical, radiographic, and patient-reported outcome measures were compared among clusters using one-way analysis of variance (ANOVA).
Twenty-three (55%) mild, 9 (21%) moderate, and 10 (24%) severe myelopathy patients were enrolled. Eight patients were excluded due to MRI data of insufficient quality. Of the remaining 42 patients, 3 groups were generated by k-means clustering. When compared with clusters 1 and 2, cluster 3 performed significantly worse on the modified Japanese Orthopedic Association and all patient-reported outcome measures (P<0.001), except the 36-Item Short Form Survey mental component summary (P>0.05). Cluster 3 also possessed the highest proportion of non-Caucasian patients (43%, P=0.04), the worst hand dynamometer measurements (P<0.05), and significantly higher intra-axonal axial diffusivity and extra-axonal fraction values (P<0.001).
Using baseline imaging data, we delineated a clinically meaningful CSM disease phenotype, characterized by worse neurofunctional status, quality-of-life, and pain, and more severe imaging markers of vasogenic edema.
II.
前瞻性队列研究。
应用机器学习聚类算法对基线影像学数据进行分析,以识别具有临床意义的颈椎脊髓病(CSM)患者表型。
改善 CSM 患者护理的主要缺点是缺乏用于指导手术决策的强大定量影像学工具。高级弥散加权磁共振成像(MRI)技术,如弥散基础谱成像(DBSI),可以通过提供 CSM 白质损伤的详细评估来帮助解决这一局限性。
50 例 CSM 患者接受了全面的临床评估和弥散加权 MRI,然后进行 DBSI 建模。DBSI 指标包括各向异性分数、轴向和径向弥散度、纤维分数、细胞外分数、限制分数和非限制分数。神经功能状态通过改良日本矫形协会、脊髓病残疾指数和臂肩手残疾指数进行评估。生活质量通过 36 项简短健康调查问卷的生理成分总分和心理成分总分进行评估。颈痛指数用于测量自我报告的颈部疼痛。应用 K-均值聚类分析对基线 DBSI 指标进行分析,以确定 3 种具有临床意义的 CSM 疾病表型。采用单因素方差分析(ANOVA)比较聚类间基线人口统计学、临床、影像学和患者报告的结局指标。
23 例(55%)为轻度、9 例(21%)为中度、10 例(24%)为重度脊髓病患者。由于 MRI 数据质量不足,有 8 例患者被排除。在其余的 42 例患者中,通过 K-均值聚类生成了 3 组。与聚类 1 和聚类 2 相比,聚类 3 在改良日本矫形协会和所有患者报告的结局指标上的表现明显更差(P<0.001),除 36 项简短健康调查问卷心理成分总分(P>0.05)外。聚类 3 还具有最高比例的非高加索患者(43%,P=0.04)、最差的握力计测量值(P<0.05),以及显著更高的轴内轴向弥散度和细胞外分数值(P<0.001)。
我们使用基线影像学数据描绘了一种具有临床意义的 CSM 疾病表型,其特征为神经功能状态、生活质量和疼痛更差,以及更严重的血管源性水肿影像学标志物。
II 级。