College of Sciences and Mathematics and Molecular Biosciences Program, Arkansas State University, Jonesboro, AR, USA.
Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA.
Syst Biol. 2023 Aug 7;72(4):802-819. doi: 10.1093/sysbio/syad014.
A fundamental aspect of symbiotic relationships is host specificity, ranging from extreme specialists associated with only a single host species to generalists associated with many different species. Although symbionts with limited dispersal capabilities are expected to be host specialists, some are able to associate with multiple hosts. Understanding the micro- and macro-evolutionary causes of variations in host specificity is often hindered by sampling biases and the limited power of traditional evolutionary markers. Here, we studied feather mites to address the barriers associated with estimates of host specificity for dispersal-limited symbionts. We sampled feather mites (Proctophyllodidae) from a nearly comprehensive set of North American breeding warblers (Parulidae) to study mite phylogenetic relationships and host-symbiont codiversification. We used pooled-sequencing (Pool-Seq) and short-read Illumina technology to interpret results derived from a traditional barcoding gene (cytochrome c oxidase subunit 1) versus 11 protein-coding mitochondrial genes using concatenated and multispecies coalescent approaches. Despite the statistically significant congruence between mite and host phylogenies, mite-host specificity varies widely, and host switching is common regardless of the genetic marker resolution (i.e., barcode vs. multilocus). However, the multilocus approach was more effective than the single barcode in detecting the presence of a heterogeneous Pool-Seq sample. These results suggest that presumed symbiont dispersal capabilities are not always strong indicators of host specificity or of historical host-symbiont coevolutionary events. A comprehensive sampling at fine phylogenetic scales may help to better elucidate the microevolutionary filters that impact macroevolutionary processes regulating symbioses, particularly for dispersal-limited symbionts. [Codiversification; cophylogenetics; feather mites; host switching; pooled sequencing; species delineation; symbiosis, warblers.].
共生关系的一个基本方面是宿主特异性,范围从仅与单一宿主物种相关的极端专性共生体到与许多不同物种相关的广义共生体。尽管扩散能力有限的共生体应该是宿主专性的,但有些共生体能够与多个宿主相关联。理解宿主特异性变化的微观和宏观进化原因通常受到采样偏差和传统进化标记有限功效的阻碍。在这里,我们研究了羽毛螨,以解决与扩散受限共生体的宿主特异性估计相关的障碍。我们从几乎全面的北美繁殖莺类(Parulidae)中采样了羽毛螨(Proctophyllodidae),以研究螨的系统发育关系和宿主-共生体共进化。我们使用聚合测序(Pool-Seq)和短读 Illumina 技术,使用连锁和多物种合并方法,解释源自传统条形码基因(细胞色素 c 氧化酶亚基 1)与 11 个线粒体蛋白编码基因的结果。尽管螨和宿主的系统发育具有统计学上的显著一致性,但螨与宿主的特异性差异很大,而且无论遗传标记分辨率(即条形码与多位点)如何,宿主转换都很常见。然而,与单个条形码相比,多基因方法在检测异质 Pool-Seq 样本的存在方面更有效。这些结果表明,假定的共生体扩散能力并不总是宿主特异性或历史上宿主-共生体共进化事件的强指标。在精细的系统发育尺度上进行全面采样可能有助于更好地阐明影响调节共生关系的宏观进化过程的微观进化过滤器,特别是对于扩散受限的共生体。[共进化;共系统发育;羽毛螨;宿主转换;聚合测序;物种划定;共生关系,莺科。]