Sun Wenzhi, Zhao Tingting, Wang Shuya, Wei Denghu, Jiao Mengmeng, Zhang Hongwu
School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China.
School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
Phys Chem Chem Phys. 2023 Apr 5;25(14):9987-9998. doi: 10.1039/d3cp00456b.
We report yellow-orange emitting phosphors SrCaMg(PO):0.05Eu (SCMPO:Eu, = 0.5-2.5) and SrBaMg(PO):0.05Eu (SBMPO:Eu, = 0.5-3.0) with broad emission bands (450-800 nm). All these phosphors can be excited efficiently by blue light and n-UV light. Their crystal structure, photoluminescence spectra, fluorescence decay curves and thermal stability were investigated in detail. As doping concentrations of Ca or Ba increase, Eu emitting centers will selectively occupy different Sr sites, thus leading to the regulation of optical spectra of SCMPO:Eu and SBMPO:Eu. Accordingly, the emission colors of SCMPO:Eu and SBMPO:Eu samples can gradually turn from yellow to orange when excited using 460 nm blue light. And the emission colors of a given sample can also be varied under different excitations because there are three kinds of emitting centers in SCMPO:Eu and SBMPO:Eu. In addition, introducing Ca and Ba can enhance the thermal stability of the phosphors obviously, and overall, the thermal stability of SBMPO:Eu is better than that of SCMPO:Eu. We chose SBMPO:Eu as an example to further investigate its photoluminescence properties, and found that the optimal doping concentration of Eu is 0.08, and dipole-quadrupole interaction is dominated in the concentration quenching mechanism. Furthermore, high-quality warm white light can be obtained by two ways: (a) 470 nm blue LED chip + SCMPO:Eu [CCT = 3639 K, = 82.21] and (b) 470 nm blue LED chip + SBMPO:Eu and YAG:Ce [CCT = 4284 K, = 86.69]. The excellent performances indicate that SCMPO:Eu and SBMPO:Eu are attractive candidates for warm WLEDs.
我们报道了发射黄橙色光的磷光体SrCaMg(PO₄)₃:0.05Eu³⁺(SCMPO:Eu³⁺,x = 0.5 - 2.5)和SrBaMg(PO₄)₃:0.05Eu³⁺(SBMPO:Eu³⁺,x = 0.5 - 3.0),它们具有宽发射带(450 - 800 nm)。所有这些磷光体都能被蓝光和近紫外光有效激发。详细研究了它们的晶体结构、光致发光光谱、荧光衰减曲线和热稳定性。随着Ca或Ba掺杂浓度的增加,Eu³⁺发射中心将选择性占据不同的Sr位点,从而导致对SCMPO:Eu³⁺和SBMPO:Eu³⁺光谱的调控。因此,当用460 nm蓝光激发时,SCMPO:Eu³⁺和SBMPO:Eu³⁺样品的发射颜色可从黄色逐渐变为橙色。并且由于SCMPO:Eu³⁺和SBMPO:Eu³⁺中有三种发射中心,给定样品在不同激发下的发射颜色也会变化。此外,引入Ca和Ba能显著提高磷光体的热稳定性,总体而言,SBMPO:Eu³⁺的热稳定性优于SCMPO:Eu³⁺。我们以SBMPO:Eu³⁺为例进一步研究其光致发光性能,发现Eu³⁺的最佳掺杂浓度为0.08,且浓度猝灭机制中偶极 - 四极相互作用占主导。此外,可通过两种方式获得高质量的暖白光:(a)470 nm蓝色发光二极管芯片 + SCMPO:Eu³⁺[显色指数(CCT)= 3639 K,显色指数(Ra)= 82.21]和(b)470 nm蓝色发光二极管芯片 + SBMPO:Eu³⁺和YAG:Ce[CCT = 4284 K,Ra = 86.69]。这些优异性能表明SCMPO:Eu³⁺和SBMPO:Eu³⁺是用于暖白光发光二极管的有吸引力的候选材料。