School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China.
School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India.
Phys Rev Lett. 2023 Mar 10;130(10):107202. doi: 10.1103/PhysRevLett.130.107202.
We introduce a new model consisting of globally coupled high-dimensional generalized limit-cycle oscillators, which explicitly incorporates the role of amplitude dynamics of individual units in the collective dynamics. In the limit of weak coupling, our model reduces to the D-dimensional Kuramoto phase model, akin to a similar classic construction of the well-known Kuramoto phase model from weakly coupled two-dimensional limit-cycle oscillators. For the practically important case of D=3, the incoherence of the model is rigorously proved to be stable for negative coupling (K<0) but unstable for positive coupling (K>0); the locked states are shown to exist if K>0; in particular, the onset of amplitude death is theoretically predicted. For D≥2, the discrete and continuous spectra for both locked states and amplitude death are governed by two general formulas. Our proposed D-dimensional model is physically more reasonable, because it is no longer constrained by fixed amplitude dynamics, which puts the recent studies of the D-dimensional Kuramoto phase model on a stronger footing by providing a more general framework for D-dimensional limit-cycle oscillators.
我们提出了一个由全局耦合的高维广义极限环振荡器组成的新模型,该模型明确地将单个单元的幅度动力学纳入到集体动力学中。在弱耦合的极限下,我们的模型简化为 D 维 Kuramoto 相位模型,类似于著名的 Kuramoto 相位模型从弱耦合二维极限环振荡器的类似经典构造。对于 D=3 的实际重要情况,我们严格证明了模型的非相干性对于负耦合(K<0)是稳定的,但对于正耦合(K>0)是不稳定的;如果 K>0,则存在锁定状态;特别是,理论上预测了幅度死亡的出现。对于 D≥2,锁定状态和幅度死亡的离散和连续谱都由两个通用公式控制。我们提出的 D 维模型在物理上更合理,因为它不再受到固定幅度动力学的限制,这通过为 D 维极限环振荡器提供更通用的框架,为 D 维 Kuramoto 相位模型的最近研究提供了更坚实的基础。