Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China.
Sci Rep. 2023 Mar 24;13(1):4857. doi: 10.1038/s41598-023-31947-4.
Post-acute pancreatitis diabetes mellitus (PPDM-A) is the main component of pancreatic exocrine diabetes mellitus. Timely diagnosis of PPDM-A improves patient outcomes and the mitigation of burdens and costs. We aimed to determine risk factors prospectively and predictors of PPDM-A in China, focusing on giving personalized treatment recommendations. Here, we identify and evaluate the best set of predictors of PPDM-A prospectively using retrospective data from 820 patients with acute pancreatitis at four centers by machine learning approaches. We used the L1 regularized logistic regression model to diagnose early PPDM-A via nine clinical variables identified as the best predictors. The model performed well, obtaining the best AUC = 0.819 and F1 = 0.357 in the test set. We interpreted and personalized the model through nomograms and Shapley values. Our model can accurately predict the occurrence of PPDM-A based on just nine clinical pieces of information and allows for early intervention in potential PPDM-A patients through personalized analysis. Future retrospective and prospective studies with multicentre, large sample populations are needed to assess the actual clinical value of the model.
急性胰腺炎后糖尿病(PPDM-A)是胰腺外分泌糖尿病的主要组成部分。及时诊断 PPDM-A 可改善患者的预后,并减轻负担和降低成本。我们旨在前瞻性确定中国 PPDM-A 的危险因素和预测因素,重点是提供个性化的治疗建议。在这里,我们使用机器学习方法,从四个中心的 820 名急性胰腺炎患者的回顾性数据中识别和评估了最佳的 PPDM-A 预测因素集。我们使用 L1 正则化逻辑回归模型通过确定的九个最佳预测因素来诊断早期 PPDM-A。该模型表现良好,在测试集中获得最佳 AUC=0.819 和 F1=0.357。我们通过列线图和 Shapley 值对模型进行了解释和个性化。我们的模型可以根据仅有的九个临床信息准确预测 PPDM-A 的发生,并通过个性化分析对潜在的 PPDM-A 患者进行早期干预。需要未来进行多中心、大样本的回顾性和前瞻性研究,以评估该模型的实际临床价值。