Suppr超能文献

机器学习在预测急性胰腺炎后糖尿病及个性化治疗建议中的应用。

Machine learning for post-acute pancreatitis diabetes mellitus prediction and personalized treatment recommendations.

机构信息

Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.

Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China.

出版信息

Sci Rep. 2023 Mar 24;13(1):4857. doi: 10.1038/s41598-023-31947-4.

Abstract

Post-acute pancreatitis diabetes mellitus (PPDM-A) is the main component of pancreatic exocrine diabetes mellitus. Timely diagnosis of PPDM-A improves patient outcomes and the mitigation of burdens and costs. We aimed to determine risk factors prospectively and predictors of PPDM-A in China, focusing on giving personalized treatment recommendations. Here, we identify and evaluate the best set of predictors of PPDM-A prospectively using retrospective data from 820 patients with acute pancreatitis at four centers by machine learning approaches. We used the L1 regularized logistic regression model to diagnose early PPDM-A via nine clinical variables identified as the best predictors. The model performed well, obtaining the best AUC = 0.819 and F1 = 0.357 in the test set. We interpreted and personalized the model through nomograms and Shapley values. Our model can accurately predict the occurrence of PPDM-A based on just nine clinical pieces of information and allows for early intervention in potential PPDM-A patients through personalized analysis. Future retrospective and prospective studies with multicentre, large sample populations are needed to assess the actual clinical value of the model.

摘要

急性胰腺炎后糖尿病(PPDM-A)是胰腺外分泌糖尿病的主要组成部分。及时诊断 PPDM-A 可改善患者的预后,并减轻负担和降低成本。我们旨在前瞻性确定中国 PPDM-A 的危险因素和预测因素,重点是提供个性化的治疗建议。在这里,我们使用机器学习方法,从四个中心的 820 名急性胰腺炎患者的回顾性数据中识别和评估了最佳的 PPDM-A 预测因素集。我们使用 L1 正则化逻辑回归模型通过确定的九个最佳预测因素来诊断早期 PPDM-A。该模型表现良好,在测试集中获得最佳 AUC=0.819 和 F1=0.357。我们通过列线图和 Shapley 值对模型进行了解释和个性化。我们的模型可以根据仅有的九个临床信息准确预测 PPDM-A 的发生,并通过个性化分析对潜在的 PPDM-A 患者进行早期干预。需要未来进行多中心、大样本的回顾性和前瞻性研究,以评估该模型的实际临床价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c5/10038980/c9306c5eff78/41598_2023_31947_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验