Suppr超能文献

稀疏数据下混合治愈模型的惩罚极大似然推断。

Penalized maximum likelihood inference under the mixture cure model in sparse data.

机构信息

Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, 155 College St, Toronto, Ontario, M5T3M7, Canada.

Lunenfeld-Tanenbaum Research Institute, Sinai Health, 60 Murray St, Toronto, Ontario, M5T3L9, Canada.

出版信息

Stat Med. 2023 Jun 15;42(13):2134-2161. doi: 10.1002/sim.9715. Epub 2023 Mar 25.

Abstract

INTRODUCTION

When a study sample includes a large proportion of long-term survivors, mixture cure (MC) models that separately assess biomarker associations with long-term recurrence-free survival and time to disease recurrence are preferred to proportional-hazards models. However, in samples with few recurrences, standard maximum likelihood can be biased.

OBJECTIVE AND METHODS

We extend Firth-type penalized likelihood (FT-PL) developed for bias reduction in the exponential family to the Weibull-logistic MC, using the Jeffreys invariant prior. Via simulation studies based on a motivating cohort study, we compare parameter estimates of the FT-PL method to those by ML, as well as type 1 error (T1E) and power obtained using likelihood ratio statistics.

RESULTS

In samples with relatively few events, the Firth-type penalized likelihood estimates (FT-PLEs) have mean bias closer to zero and smaller mean squared error than maximum likelihood estimates (MLEs), and can be obtained in samples where the MLEs are infinite. Under similar T1E rates, FT-PL consistently exhibits higher statistical power than ML in samples with few events. In addition, we compare FT-PL estimation with two other penalization methods (a log-F prior method and a modified Firth-type method) based on the same simulations.

DISCUSSION

Consistent with findings for logistic and Cox regressions, FT-PL under MC regression yields finite estimates under stringent conditions, and better bias-and-variance balance than the other two penalizations. The practicality and strength of FT-PL for MC analysis is illustrated in a cohort study of breast cancer prognosis with long-term follow-up for recurrence-free survival.

摘要

简介

当研究样本中包含大量长期幸存者时,与比例风险模型相比,混合治愈(MC)模型更适合分别评估生物标志物与长期无复发生存和疾病复发时间的相关性,因为前者可以更好地处理此类问题。然而,在复发次数较少的样本中,标准极大似然法可能存在偏差。

目的和方法

我们将用于减少指数家族中偏差的 Firth 型惩罚似然(FT-PL)扩展到 Weibull-Logistic MC,使用 Jeffreys 不变先验。通过基于动机队列研究的模拟研究,我们将 FT-PL 方法的参数估计与最大似然法(ML)的参数估计进行了比较,同时还比较了使用似然比统计量获得的第一类错误(T1E)和功效。

结果

在相对较少事件的样本中,Firth 型惩罚似然估计(FT-PLE)的均值偏差更接近零,均方误差更小,并且可以在最大似然估计(MLE)为无穷大的样本中获得。在类似的 T1E 率下,FT-PL 在事件较少的样本中始终表现出比 ML 更高的统计功效。此外,我们还基于相同的模拟比较了 FT-PL 估计与其他两种惩罚方法(对数-F 先验方法和修正的 Firth 型方法)的估计。

讨论

与逻辑和 Cox 回归的结果一致,在 MC 回归下,FT-PL 在严格条件下产生有限的估计值,并且比其他两种惩罚方法具有更好的偏差和方差平衡。在具有长期无复发生存随访的乳腺癌预后队列研究中,FT-PL 对于 MC 分析的实用性和优势得到了体现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验