Suppr超能文献

使用新型机器学习算法预测 GnRH 拮抗剂灵活 IVF 方案中的卵母细胞成熟率 - 一项回顾性研究。

Prediction of oocyte maturation rate in the GnRH antagonist flexible IVF protocol using a novel machine learning algorithm - A retrospective study.

机构信息

IVF and Infertility Unit, Helen Schneider Hospital for Women, Rabin Medical Center-Beilinson Hospital, Petach Tikva, 4941492, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6901128, Israel.

IVF and Infertility Unit, Helen Schneider Hospital for Women, Rabin Medical Center-Beilinson Hospital, Petach Tikva, 4941492, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6901128, Israel.

出版信息

Eur J Obstet Gynecol Reprod Biol. 2023 May;284:100-104. doi: 10.1016/j.ejogrb.2023.03.022. Epub 2023 Mar 21.

Abstract

Oocyte maturation is affected by various patient and cycle parameters and has a key effect on treatment outcome. A prediction model for oocyte maturation rate formulated by using machine learning and neural network algorithms has not yet been described. A retrospective cohort study that included all women aged ≤ 38 years who underwent their first IVF treatment using a flexible GnRH antagonist protocol in a single tertiary hospital between 2010 and 2015. 462 patients met the inclusion criteria. Median maturation rate was approximately 80%. Baseline characteristics and treatment parameters of cycles with high oocyte maturation rate (≥80%, n = 236) were compared to cycles with low oocyte maturation rate (<80%, n = 226). We used an XGBoost algorithm that fits the training data using decision trees and rates factors according to their influence on the prediction. For the machine training phase, 80% of the cohort was randomly selected, while rest of the samples were used to evaluate our model's accuracy. We demonstrated an accuracy rate of 75% in predicting high oocyte maturation rate in GnRH antagonist cycles. Our model showed an operating characteristic curve with AUC of 0.78 (95% CI 0.73-0.82). The most predictive parameters were peak estradiol level on trigger day, estradiol level on antagonist initiation day, average dose of gonadotropins per day and progesterone level on trigger day. A state-of-the-art machine learning algorithm presented promising ability to predict oocyte maturation rate in the first GnRH antagonist flexible protocol using simple parameters before final trigger for ovulation. A prospective study to evaluate this model is needed.

摘要

卵母细胞成熟受多种患者和周期参数的影响,对治疗结果有重要影响。尚未描述使用机器学习和神经网络算法制定的卵母细胞成熟率预测模型。本回顾性队列研究纳入了 2010 年至 2015 年期间在一家三级医院接受首次使用灵活 GnRH 拮抗剂方案的所有≤38 岁的女性。462 名患者符合纳入标准。平均成熟率约为 80%。高卵母细胞成熟率(≥80%,n=236)周期的基线特征和治疗参数与低卵母细胞成熟率(<80%,n=226)周期进行了比较。我们使用了 XGBoost 算法,该算法使用决策树拟合训练数据,并根据其对预测的影响对因素进行评分。在机器训练阶段,随机选择了 80%的队列,其余样本用于评估我们模型的准确性。我们在 GnRH 拮抗剂周期中预测高卵母细胞成熟率的准确率达到了 75%。我们的模型显示出 0.78(95%CI 0.73-0.82)的曲线下面积的操作特征曲线。最具预测性的参数是触发日的峰值雌二醇水平、拮抗剂起始日的雌二醇水平、每天促性腺激素的平均剂量和触发日的孕酮水平。一种最先进的机器学习算法具有使用简单参数预测首次 GnRH 拮抗剂灵活方案中卵母细胞成熟率的有前景的能力,该方案在最终触发排卵之前。需要进行前瞻性研究来评估该模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验