Suppr超能文献

N-糖基化增强免疫检查点 TIM-3 与小分子配体的相互作用。

N-glycosylation reinforces interaction of immune checkpoint TIM-3 with a small molecule ligand.

机构信息

University of Lille, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, F-59006 Lille, France.

University of Lille, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, F-59006 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; OncoWitan, Lille (Wasquehal), 59290, France.

出版信息

Comput Biol Chem. 2023 Jun;104:107852. doi: 10.1016/j.compbiolchem.2023.107852. Epub 2023 Mar 22.

Abstract

N-glycosylation of eukaryotic proteins plays roles in protein folding, trafficking, and signal transduction. The biological influence of the process is well understood, whereas the pharmacological impact of protein N-glycosylation is not well under discerned. The role of N-glycosylation on drug binding to protein has been rarely studied. We have modeled the influence of a bi-antennary N-glycan introduced at position N78 on the immune checkpoint TIM-3 (T cell immunoglobulin domain and mucin domain-containing molecule 3) on the interaction with a selective drug antagonist. The bulky N-glycan introduced at the consensus sequence Asn-Val-Thr has no influence on drug binding when the glycan adopts an extended conformation. But in a folded conformation, the glycan can interact directly with the triazoloquinazolinone derivative so as to further stabilize the drug-TIM-3 complex. The non-fucosylated glycan at position N78 markedly consolidates the drug interaction, via an additional H-bond interaction with the α3-mannose residue. It provides a gain of empirical potential energy of interaction (ΔE) of about 30 %. The presence of a more rigid fucosylated N-glycan is a little less favorable, with a gain of ΔE of about 20 %. The folded N-glycan appears to protect the ligand bound to the protein cavity, with the tricyclic core of the heterocyclic molecule sandwiched between two indole rings of tryptophan residues. Similar results were obtained when using a biantennary disialyl N-glycan with a bisecting GlcNAc residue and a tetra-antennary N-glycan. The molecular models illustrate the drug-stabilizing capacity of a bulky N-glycan positioned at a validated glycosylation site (N78 corresponding to N100 for the full-length protein). The modeling approach is useful to delineate further the role of the N-glycan of the immune checkpoint TIM-3 in interaction with small molecule ligands, and to guide the design of more potent compounds. The approach is transposable to other proteins to better comprehend the influence of N-glycans on drug-receptor interactions.

摘要

真核蛋白的 N-糖基化在蛋白质折叠、运输和信号转导中发挥作用。该过程的生物学影响已得到充分理解,而蛋白质 N-糖基化的药理学影响尚未得到很好的识别。N-糖基化对药物与蛋白质结合的作用很少被研究。我们已经模拟了在位置 N78 引入双天线 N-聚糖对免疫检查点 TIM-3(T 细胞免疫球蛋白结构域和粘蛋白结构域包含分子 3)与选择性药物拮抗剂相互作用的影响。在共识序列 Asn-Val-Thr 处引入的大体积 N-聚糖在聚糖采用扩展构象时对药物结合没有影响。但是,在折叠构象中,聚糖可以与三唑并喹唑啉酮衍生物直接相互作用,从而进一步稳定药物-TIM-3 复合物。位置 N78 处未糖基化的聚糖通过与 α3-甘露糖残基的额外氢键相互作用,显著增强了药物相互作用。它提供了约 30%的经验势能(ΔE)增益。带有刚性岩藻糖基的 N-聚糖的存在稍微不利,约有 20%的ΔE 增益。折叠的 N-聚糖似乎保护与蛋白腔结合的配体,杂环分子的三环核心夹在色氨酸残基的两个吲哚环之间。使用带有双触角唾液酸二糖和双分叉 GlcNAc 残基的双触角二唾液酰 N-聚糖以及四触角 N-聚糖时,得到了类似的结果。分子模型说明了在经过验证的糖基化位点(全长蛋白中对应于 N100 的 N78)处定位的大体积 N-聚糖稳定药物的能力。该建模方法有助于进一步阐明免疫检查点 TIM-3 的 N-聚糖与小分子配体相互作用的作用,并指导更有效的化合物的设计。该方法可转移到其他蛋白质,以更好地理解 N-聚糖对药物-受体相互作用的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验