Department of Laboratory Medicine, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
Virus Res. 2023 May;329:199092. doi: 10.1016/j.virusres.2023.199092. Epub 2023 Apr 5.
Zika virus (ZIKV) is a mosquito-borne flavivirus that causes severe neurological disorders, such as microcephaly in fetuses. Most recently, an outbreak of ZIKV started in Brazil in 2015. To date, no therapeutic agents have been approved to treat ZIKV infection in the clinic. Here, we screened a small molecule inhibitor that can inhibit the function of ZIKV non-structural protein 2B (NS2B)-NS3 protease (ZIKV NS2B-NS3 protease), thereby interfering with viral replication and spread. First, we identified the half maximal inhibitory concentration (IC) of compound 3 (14.01 μM), 8 (6.85 μM), and 9 (14.2 μM) and confirmed that they are all non-competitive inhibitors. In addition, we have used the blind molecular docking method to simulate the inhibition area of three non-competitive inhibitors (compound 3, 8, and 9) with the ZIKV NS2B-NS3 protease. The results indicated that the four allosteric binding residues (Gln139, Trp148, Leu150, and Val220) could form hydrogen bonds or non-bonding interactions most frequently with the three compounds. The interaction might induce the reaction center conformation change of NS2B-NS3 protease to reduce catalyzed efficiency. The concentration of compounds required to reduce cell viability by 50% (CC), and the concentration of compounds required to inhibit virus-induced cytopathic effect by 50% (EC) of three potential compounds are >200 μM, 2.15 μM (compound 3), > 200 μM, 0.52 μM (compound 8) and 61.48 μM, 3.52 μM (compound 9), and Temoporfin are 61.05 μM, 2 μM, respectively. To select candidate compounds for further animal experiments, we analyzed the selectivity index (SI) of compound 3 (93.02), 8 (384.61), 9 (17.46), and Temoporfin (30.53, FDA-approved drug against cancer). Compound 8 has the highest SI value. Therefore, compound 8 was selected for verification in animal models. In vivo, compound 8 significantly delayed ZIKV-induced lethality and illness symptoms and decreased ZIKV-induced weight loss in a ZIKV-infected suckling mouse model. We conclude that compound 8 is worth further investigation for use as a potential future therapeutic agent against ZIKV infection.
寨卡病毒(ZIKV)是一种通过蚊子传播的黄病毒,可导致严重的神经紊乱,例如胎儿小头畸形。最近,2015 年巴西爆发了寨卡病毒疫情。迄今为止,尚无治疗药物被批准用于临床治疗寨卡病毒感染。在这里,我们筛选了一种小分子抑制剂,该抑制剂可以抑制寨卡病毒非结构蛋白 2B(NS2B)-NS3 蛋白酶(ZIKV NS2B-NS3 蛋白酶)的功能,从而干扰病毒的复制和传播。首先,我们确定了化合物 3(14.01μM)、8(6.85μM)和 9(14.2μM)的半最大抑制浓度(IC),并证实它们均为非竞争性抑制剂。此外,我们还使用盲分子对接方法模拟了三种非竞争性抑制剂(化合物 3、8 和 9)与寨卡病毒 NS2B-NS3 蛋白酶的抑制区域。结果表明,四个变构结合残基(Gln139、Trp148、Leu150 和 Val220)可以与三种化合物形成氢键或非键相互作用,最频繁地形成氢键或非键相互作用。相互作用可能会引起 NS2B-NS3 蛋白酶的反应中心构象变化,从而降低催化效率。三种潜在化合物的使细胞活力降低 50%的浓度(CC)和使病毒诱导的细胞病变效应降低 50%的浓度(EC)分别为>200μM,2.15μM(化合物 3),>200μM,0.52μM(化合物 8)和 61.48μM,3.52μM(化合物 9),Temoporfin 为 61.05μM,2μM。为了选择候选化合物进行进一步的动物实验,我们分析了化合物 3(93.02)、8(384.61)、9(17.46)和 Temoporfin(FDA 批准的抗癌药物)的选择性指数(SI)。化合物 3 的 SI 值最高。因此,选择化合物 8 进行动物模型验证。在体内,化合物 8 可显著延迟寨卡病毒诱导的致死率和疾病症状,并减轻寨卡病毒感染乳鼠模型中的体重减轻。我们得出结论,化合物 8 值得进一步研究,作为一种有潜力的寨卡病毒感染治疗药物。