Department of Mathematics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
Department of Mathematics, California State University-Dominguez Hills, Carson, CA 90747, USA.
J Theor Biol. 2023 May 21;565:111470. doi: 10.1016/j.jtbi.2023.111470. Epub 2023 Mar 23.
The SARS-CoV-2 coronavirus continues to evolve with scores of mutations of the spike, membrane, envelope, and nucleocapsid structural proteins that impact pathogenesis. Infection data from nasal swabs, nasal PCR assays, upper respiratory samples, ex vivo cell cultures and nasal epithelial organoids reveal extreme variabilities in SARS-CoV-2 RNA titers within and between the variants. Some variabilities are naturally prone to clinical testing protocols and experimental controls. Here we focus on nasal viral load sensitivity arising from the timing of sample collection relative to onset of infection and from heterogeneity in the kinetics of cellular infection, uptake, replication, and shedding of viral RNA copies. The sources of between-variant variability are likely due to SARS-CoV-2 structural protein mutations, whereas within-variant population variability is likely due to heterogeneity in cellular response to that particular variant. With the physiologically faithful, agent-based mechanistic model of inhaled exposure and infection from (Chen et al., 2022), we perform statistical sensitivity analyses of the progression of nasal viral titers in the first 0-48 h post infection, focusing on three kinetic mechanisms. Model simulations reveal shorter latency times of infected cells (including cellular uptake, viral RNA replication, until the onset of viral RNA shedding) exponentially accelerate nasal viral load. Further, the rate of infectious RNA copies shed per day has a proportional influence on nasal viral load. Finally, there is a very weak, negative correlation of viral load with the probability of infection per virus-cell encounter, the model proxy for spike-receptor binding affinity.
SARS-CoV-2 冠状病毒不断进化,其刺突、膜、包膜和核衣壳结构蛋白发生了大量突变,这些突变影响了发病机制。来自鼻拭子、鼻 PCR 检测、上呼吸道样本、离体细胞培养物和鼻上皮类器官的感染数据表明,SARS-CoV-2 RNA 滴度在变体内部和变体之间存在极端的变异性。有些变异性自然容易受到临床检测方案和实验对照的影响。在这里,我们关注的是鼻病毒载量的敏感性,这种敏感性源于样本采集相对于感染开始的时间,以及细胞感染、摄取、复制和病毒 RNA 拷贝脱落的动力学异质性。变体间变异性的来源可能是由于 SARS-CoV-2 结构蛋白突变,而变体内群体变异性可能是由于对特定变体的细胞反应异质性所致。我们使用(Chen 等人,2022)吸入暴露和感染的生理真实、基于代理的机械模型,对感染后 0-48 小时内鼻病毒滴度的进展进行了统计敏感性分析,重点关注三种动力学机制。模型模拟结果表明,受感染细胞的潜伏期(包括细胞摄取、病毒 RNA 复制,直到病毒 RNA 脱落开始)的缩短呈指数级加速了鼻病毒载量。此外,每天释放的感染性 RNA 拷贝数与鼻病毒载量呈比例关系。最后,病毒载量与病毒-细胞接触的感染概率之间存在非常微弱的负相关,这是模型中 Spike 受体结合亲和力的代理。