Suppr超能文献

氧化铜-氧化锌 p-n 结通过机器学习算法辅助准确预测多种挥发性有机化合物。

CuO-ZnO p-n junctions for accurate prediction of multiple volatile organic compounds aided by machine learning algorithms.

机构信息

Electrical Engineering Department, Indian Institute of Technology Dharwad, Karnataka, 580011, India.

Electrical Engineering Department, Indian Institute of Technology Dharwad, Karnataka, 580011, India.

出版信息

Anal Chim Acta. 2023 May 1;1253:341084. doi: 10.1016/j.aca.2023.341084. Epub 2023 Mar 14.

Abstract

Detection and quantification of multiple volatile organic compounds (VOCs) are emerging as critical requirements for several niche applications including healthcare. It is desirable to get multiple gases identified rapidly and using minimum number of sensors. Heterojunctions of metal oxides are still among the top-picks for efficient VOC sensing because they unfold exciting sensing characteristics in addition to enhanced response. This work reports the synthesis of nanostructures of CuO, ZnO, and three CuO-ZnO p-n junctions having different weight percentages (1-0.5, 1-1, and 0.5-1) of CuO and ZnO, using a facile one-pot hydrothermal method. The nanomaterials were characterized using X-ray diffraction, field emission scanning electron microscopy, and UV-Visible spectroscopy. Resistive sensors were fabricated of all five nanomaterials and were tested for 25-200 ppm of four VOCs - isopropanol, methanol, acetonitrile, and toluene. The CuO and CuO-ZnO (1-0.5) sensors showed the highest response for isopropanol (7.5-65.3% and 19-122%, respectively) at 250 °C, CuO-ZnO (1-1) and CuO-ZnO (0.5-1) exhibited the highest responses for methanol (9-60%) and isopropanol (15-120%), respectively at 350 °C, and the intrinsic ZnO showed maximum response to toluene (29-76%) at 400 °C. All the sensing layers were observed to exhibit finite responses to the other three VOCs so, an attempt to classify and quantify the four VOCs accurately was made using support vector machine (SVM) and multiple linear regression (MLR) algorithms. The response and response times of two sensors were observed to be sufficient as inputs to the machine learning algorithms for classifying and quantifying all the four VOCs. The combinations of (CuO-ZnO (1-0.5) & (1-1) and CuO-ZnO (1-1) & (0.5-1) demonstrated the highest classification accuracy of 98.13% with SVM. The combination of CuO-ZnO (1-0.5) & (1-1) demonstrated the best quantification of the four VOCs using MLR.

摘要

检测和量化多种挥发性有机化合物(VOCs)正成为包括医疗保健在内的多个利基应用的关键要求。人们希望快速识别多种气体,并使用最少数量的传感器。金属氧化物异质结仍然是高效 VOC 传感的首选之一,因为它们除了增强响应外,还展现出令人兴奋的传感特性。这项工作报道了使用简便的一锅水热法合成氧化铜(CuO)、氧化锌(ZnO)和三种氧化铜-氧化锌 p-n 结(CuO 和 ZnO 的重量比分别为 1-0.5、1-1 和 0.5-1)的纳米结构。使用 X 射线衍射、场发射扫描电子显微镜和紫外可见分光光度计对纳米材料进行了表征。所有五种纳米材料均制成电阻式传感器,并对四种 VOC(异丙醇、甲醇、乙腈和甲苯)的 25-200ppm 进行了测试。在 250°C 时,CuO 和 CuO-ZnO(1-0.5)传感器对异丙醇(分别为 7.5-65.3%和 19-122%)表现出最高的响应,CuO-ZnO(1-1)和 CuO-ZnO(0.5-1)在 350°C 时对甲醇(9-60%)和异丙醇(15-120%)表现出最高的响应,而本征 ZnO 在 400°C 时对甲苯(29-76%)表现出最大的响应。所有的传感层都表现出对其他三种 VOC 的有限响应,因此,尝试使用支持向量机(SVM)和多元线性回归(MLR)算法对四种 VOC 进行准确分类和定量。两种传感器的响应和响应时间都足以作为机器学习算法的输入,用于对所有四种 VOC 进行分类和定量。使用 SVM,(CuO-ZnO(1-0.5)&(1-1)和 CuO-ZnO(1-1)&(0.5-1)的组合表现出 98.13%的最高分类精度。使用 MLR,CuO-ZnO(1-0.5)&(1-1)的组合表现出对四种 VOC 的最佳定量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验