Suppr超能文献

基于循环峰度摘引导的辛几何模态分解在旋转机械故障诊断中的应用

Cycle kurtosis entropy guided symplectic geometry mode decomposition for detecting faults in rotating machinery.

机构信息

College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, PR China.

College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, PR China.

出版信息

ISA Trans. 2023 Jul;138:546-561. doi: 10.1016/j.isatra.2023.03.026. Epub 2023 Mar 21.

Abstract

Strong noise interference or compound fault coupling phenomenon may lead to the failure of fault diagnosis technology. This paper focuses on weak feature extraction and compound faults detection for rotating machinery fault diagnosis and proposes adaptive symplectic geometric mode decomposition (SGMD) using cycle kurtosis entropy. Firstly, an index named cycle kurtosis entropy (CKE) is presented to measure the strength of periodic impulses in a signal. The CKE uses the entropy value of calculating all delay cycle kurtosis (CK) to overcome the shortcomings of the CK in adaptive ability and obtain more stable values. Thirdly, CKE is applied to construct an adaptive slip window with optimal length. This process is called the adaptive window segmentation method, which is mainly used to dig out weak fault features in signals. Finally, CKE is used as the component selection criterion to select the components decomposed by SGMD. The selected components are reconstructed to obtain a de-noised signal. Hilbert envelope analysis is applied to the denoised signal to demodulate the fault characteristic frequency. Numerical simulations and experimental investigations using bearings and gears are performed to testify the property of the presented method. The results indicate that the adaptive slip window can enhance the decomposing ability of SGMD under strong noise condition. Moreover, for the strong periodic impulse identification ability, the cycle kurtosis entropy is suitable to determine the optimal components of SGMD. It is expected that the presented method will be effectively used for fault feature extractions in rotating machinery under stationary running conditions.

摘要

强噪声干扰或复合故障耦合现象可能导致故障诊断技术失效。本文针对旋转机械故障诊断中的弱特征提取和复合故障检测问题,提出了一种基于循环峭度熵的自适应辛几何模态分解(SGMD)方法。首先,提出了一种测量信号中周期脉冲强度的指标——循环峭度熵(CKE)。CKE 利用计算所有延迟周期峭度(CK)的熵值来克服 CK 在自适应能力方面的不足,从而获得更稳定的值。然后,将 CKE 应用于构建具有最佳长度的自适应滑动窗口。该过程称为自适应窗口分段方法,主要用于挖掘信号中的弱故障特征。最后,利用 CKE 作为 SGMD 分解的分量选择标准。选择的分量进行重构,以获得去噪信号。对去噪信号进行希尔伯特包络分析以解调故障特征频率。通过轴承和齿轮的数值模拟和实验研究验证了所提出方法的性能。结果表明,自适应滑动窗口可以增强强噪声条件下 SGMD 的分解能力。此外,由于具有较强的周期性脉冲识别能力,循环峭度熵适用于确定 SGMD 的最佳分量。期望所提出的方法将有效地用于旋转机械在稳定运行条件下的故障特征提取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验