Suppr超能文献

一种用于检测滚动轴承中微弱复合故障的改进型自生成图和多模态能量解卷积方法。

An improved Autogram and MOMEDA method to detect weak compound fault in rolling bearings.

作者信息

Xie Xuyang, Yang Zichun, Zhang Lei, Zeng Guoqing, Wang Xuefeng, Zhang Peng, Chen Guobing

机构信息

College of Power Engineering, Naval University of Engineering, Wuhan 430033, China.

出版信息

Math Biosci Eng. 2022 Jul 22;19(10):10424-10444. doi: 10.3934/mbe.2022488.

Abstract

When weak compound fault occurs in rolling bearing, the faint fault features suffer from serious noise interference, and different type faults are coupled together, making it a great challenge to separate the fault features. To solve the problems, a novel weak compound fault diagnosis method for rolling bearing based on improved Autogram and multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) is proposed. Firstly, the kurtosis index in Autogram is modified with multi-scale permutation entropy, and improved Autogram finds the optimal resonance frequency band to preliminarily denoise the weak compound fault signal. Then, MOMEDA is performed to deconvolute the denoised signal to decouple the features of compound fault. Finally, square envelope analysis is applied on the separated deconvoluted signals to identify different type faults according to the fault characteristic frequencies in the spectrums. The proposed method is performed to analyze the simulated signal and experimental datasets of different types of rolling bearing weak compound faults. The results indicate that the proposed method can accurately diagnose the weak compound faults, and comparison with the analysis results of parameter-adaptive variational mode decomposition algorithm verifies its effectiveness and superiority.

摘要

当滚动轴承出现微弱复合故障时,微弱的故障特征会受到严重的噪声干扰,且不同类型的故障相互耦合,使得故障特征的分离成为一项巨大挑战。为解决这些问题,提出了一种基于改进自相关图和多点最优最小熵反卷积调整(MOMEDA)的滚动轴承微弱复合故障诊断新方法。首先,利用多尺度排列熵对自相关图中的峭度指标进行修正,改进后的自相关图找到最优共振频带,对微弱复合故障信号进行初步降噪。然后,进行MOMEDA对降噪后的信号进行反卷积,以解耦复合故障的特征。最后,对分离后的反卷积信号进行平方包络分析,根据频谱中的故障特征频率识别不同类型的故障。利用所提方法对不同类型滚动轴承微弱复合故障的模拟信号和实验数据集进行分析。结果表明,所提方法能够准确诊断微弱复合故障,与参数自适应变分模态分解算法的分析结果对比验证了其有效性和优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验