Suppr超能文献

足部和踝关节骨折手术后的静脉血栓栓塞风险预测。

Postoperative venous thromboembolism risk-prediction in foot and ankle fracture surgery.

机构信息

Anne Arundel Medical Center Orthopedics, 2000 Medical Parkway, Annapolis, MD 21401, USA.

Anne Arundel Medical Center Orthopedics, 2000 Medical Parkway, Annapolis, MD 21401, USA.

出版信息

Foot (Edinb). 2023 Sep;56:102017. doi: 10.1016/j.foot.2023.102017. Epub 2023 Mar 17.

Abstract

BACKGROUND

Venous thromboembolism (VTE) are rare but serious complications after foot and ankle fracture surgery. A consensus definition of a high-risk patient has not been reached, leading to significant variability in the use of pharmacologic agents for VTE prophylaxis. The aim of this study was to develop a model for predicting VTE risk in patients undergoing surgery for foot and ankle fractures that is usable and scalable in clinical practice.

METHODS

A retrospective review of 15,342 patients, within the ACS-NSQIP database, who had undergone surgical repair of foot and ankle fractures from 2015 to 2019 was performed. Univariate analysis evaluated differences in demographics and comorbidities. Stepwise multivariate logistic regression was generated based on a 60 % development cohort to evaluate risk factors for VTE. A receiver operator curve based on the 40 % test cohort calculated area under the curve (AUC) to measure the accuracy of the model in predicting VTE within the 30-day postoperative period.

RESULTS

Of the 15,342 patients, 1.2 % patients experienced VTE, and 98.8 % patients did not. Patients who experienced VTE were significantly older and had an overall higher comorbidity burden. Those who had VTE spent on average 10.5 more minutes in the operating room. In the final model, age over 65, diabetes, dyspnea, CHF, dialysis, wound infection and bleeding disorders were all found to be significant predictors of VTE after controlling for all other factors. The model generated an AUC of 0.731, indicating good predictive accuracy. The predictive model is publicly available at https://shinyapps.io/VTE_Prediction/.

CONCLUSIONS

In alignment with previous studies, we identified increased age and bleeding disorders as independent risk factors for VTE after foot and ankle fracture surgery. This is one of the first studies to generate and test a model for identifying patients at risk for VTE in this population. This evidence-based model may help surgeons prospectively identify high-risk patients who may benefit from pharmacologic VTE prophylaxis.

摘要

背景

静脉血栓栓塞症(VTE)是足部和踝关节骨折手术后罕见但严重的并发症。尚未达成高危患者的共识定义,导致 VTE 预防中药物的使用存在显著差异。本研究旨在建立一种可用于临床实践的预测足部和踝关节骨折手术后 VTE 风险的模型。

方法

对 2015 年至 2019 年期间接受足踝骨折手术修复的 15342 例 ACS-NSQIP 数据库患者进行回顾性分析。单变量分析评估了人口统计学和合并症的差异。基于 60%的开发队列进行逐步多变量逻辑回归,以评估 VTE 的危险因素。基于 40%的测试队列的接收者操作曲线计算曲线下面积(AUC),以衡量模型在预测 30 天术后 VTE 中的准确性。

结果

在 15342 例患者中,1.2%的患者发生 VTE,98.8%的患者未发生 VTE。发生 VTE 的患者年龄明显较大,整体合并症负担较高。发生 VTE 的患者在手术室中平均多花费 10.5 分钟。在最终模型中,年龄超过 65 岁、糖尿病、呼吸困难、充血性心力衰竭、透析、伤口感染和出血性疾病在控制所有其他因素后均被发现是 VTE 的显著预测因素。该模型生成的 AUC 为 0.731,表明具有良好的预测准确性。该预测模型可在 https://shinyapps.io/VTE_Prediction/ 上公开获取。

结论

与先前的研究一致,我们确定年龄增加和出血性疾病是足踝骨折手术后 VTE 的独立危险因素。这是首次生成和测试用于识别该人群中 VTE 风险患者的模型之一。这种基于证据的模型可能有助于外科医生前瞻性地识别可能受益于药物 VTE 预防的高危患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验