Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
ACS Nano. 2023 Apr 11;17(7):6955-6965. doi: 10.1021/acsnano.3c00866. Epub 2023 Mar 26.
Controlling atomic adjustment of single-atom catalysts (SACs) can directly change its local configuration, regulate the energy barrier of intermediates, and further optimize reaction pathways. Herein, we report an atom manipulating process to synthesize Ni atoms stabilized on vanadium carbide (Ni-VC) through a nanofiber-medium thermodynamically driven atomic migration strategy. Experimental and theoretical results systematically reveal the tunable migration pathway of Ni atom from Ni nanoparticles to neighboring N-doped carbon (NC) and finally to metal carbide that was obtained by regulating the competitive adsorption energies between VC and NC for capturing Ni atoms. For CO-to-CO electroreduction, Ni-VC exhibits an industrial current density of -180 mA cm at -1.0 V vs reversible hydrogen electrode and the highest Faradaic efficiency for CO production (FE) of 96.8% at -0.4 V vs RHE in a flow cell. Significant electron transfers occurring in Ni-VC structures contribute to the activation of CO, facilitate the reaction free energy, regulate *CO desorption as the rate-determining step, and promote the activity and selectivity. This study provides an understanding on how to design powerful SACs for electrocatalysis.
控制单原子催化剂(SACs)的原子调整可以直接改变其局部结构,调节中间产物的能量势垒,从而进一步优化反应途径。在此,我们通过纳米纤维介质热力学驱动原子迁移策略,报告了一种合成原子镍稳定在碳化钒(Ni-VC)上的原子操纵过程。实验和理论结果系统地揭示了 Ni 原子从 Ni 纳米颗粒到相邻氮掺杂碳(NC),最终到金属碳化物的可调迁移途径,这是通过调节 VC 和 NC 之间捕获 Ni 原子的竞争吸附能来实现的。对于 CO 到 CO 的电还原,Ni-VC 在 -1.0 V 相对于可逆氢电极时表现出 -180 mA cm 的工业电流密度,在流动池中 -0.4 V 相对于 RHE 时 CO 生成的最高法拉第效率(FE)为 96.8%。Ni-VC 结构中发生的显著电子转移有助于 CO 的活化,促进反应自由能,调节*CO 脱附作为决速步骤,并提高活性和选择性。这项研究提供了如何设计用于电催化的强大 SACs 的理解。