Suppr超能文献

外源性aralar/slc25a12可替代柠苹酸转运蛋白/slc25a13作为肝脏中苹果酸-天冬氨酸穿梭的组成成分。

Exogenous aralar/slc25a12 can replace citrin/slc25a13 as malate aspartate shuttle component in liver.

作者信息

González-Moreno Luis, Santamaría-Cano Andrea, Paradela Alberto, Martínez-Chantar María Luz, Martín Miguel Á, Pérez-Carreras Mercedes, García-Picazo Alberto, Vázquez Jesús, Calvo Enrique, González-Aseguinolaza Gloria, Saheki Takeyori, Del Arco Araceli, Satrústegui Jorgina, Contreras Laura

机构信息

Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain.

出版信息

Mol Genet Metab Rep. 2023 Mar 16;35:100967. doi: 10.1016/j.ymgmr.2023.100967. eCollection 2023 Jun.

Abstract

The deficiency of CITRIN, the liver mitochondrial aspartate-glutamate carrier (AGC), is the cause of four human clinical phenotypes, neonatal intrahepatic cholestasis caused by CITRIN deficiency (NICCD), silent period, failure to thrive and dyslipidemia caused by CITRIN deficiency (FTTDCD), and citrullinemia type II (CTLN2). Clinical symptoms can be traced back to disruption of the malate-aspartate shuttle due to the lack of citrin. A potential therapy for this condition is the expression of aralar, the AGC present in brain, to replace citrin. To explore this possibility we have first verified that the NADH/NAD ratio increases in hepatocytes from mice, and then found that exogenous aralar expression reversed the increase in NADH/NAD observed in these cells. Liver mitochondria from mice expressing liver specific transgenic aralar had a small (~ 4-6 nmoles x mg prot x min) but consistent increase in malate aspartate shuttle (MAS) activity over that of mice. These results support the functional replacement between AGCs in the liver. To explore the significance of AGC replacement in human therapy we studied the relative levels of citrin and aralar in mouse and human liver through absolute quantification proteomics. We report that mouse liver has relatively high aralar levels (citrin/aralar molar ratio of 7.8), whereas human liver is virtually devoid of aralar (CITRIN/ARALAR ratio of 397). This large difference in endogenous aralar levels partly explains the high residual MAS activity in liver of mice and why they fail to recapitulate the human disease, but supports the benefit of increasing aralar expression to improve the redox balance capacity of human liver, as an effective therapy for CITRIN deficiency.

摘要

柠檬酸转运蛋白(CITRIN)是肝脏线粒体天冬氨酸 - 谷氨酸载体(AGC),其缺乏是四种人类临床表型的病因,即柠檬酸转运蛋白缺乏所致的新生儿肝内胆汁淤积症(NICCD)、无症状期、柠檬酸转运蛋白缺乏所致的生长发育不良和血脂异常(FTTDCD)以及Ⅱ型瓜氨酸血症(CTLN2)。临床症状可追溯到由于缺乏柠檬酸转运蛋白导致的苹果酸 - 天冬氨酸穿梭功能紊乱。针对这种疾病的一种潜在治疗方法是表达脑内存在的AGC——丙氨酸 - 丝氨酸 - 半胱氨酸转运体(aralar)来替代柠檬酸转运蛋白。为了探索这种可能性,我们首先验证了在小鼠肝细胞中NADH/NAD比值升高,然后发现外源表达aralar可逆转这些细胞中观察到的NADH/NAD比值升高。表达肝脏特异性转基因aralar的小鼠肝脏线粒体,其苹果酸 - 天冬氨酸穿梭(MAS)活性比正常小鼠有小幅(约4 - 6纳摩尔×毫克蛋白×分钟)但持续的增加。这些结果支持肝脏中AGC之间的功能替代。为了探索AGC替代在人类治疗中的意义,我们通过绝对定量蛋白质组学研究了小鼠和人类肝脏中柠檬酸转运蛋白和aralar的相对水平。我们报告称,小鼠肝脏中aralar水平相对较高(柠檬酸转运蛋白/aralar摩尔比为7.8),而人类肝脏中几乎没有aralar(柠檬酸转运蛋白/ARALAR比值为397)。内源性aralar水平的这种巨大差异部分解释了正常小鼠肝脏中较高的残余MAS活性以及它们为何无法重现人类疾病,但支持增加aralar表达以提高人类肝脏氧化还原平衡能力作为柠檬酸转运蛋白缺乏症有效治疗方法的益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d01c/10031141/07f0d9cf5ed4/gr1.jpg

相似文献

1
Exogenous aralar/slc25a12 can replace citrin/slc25a13 as malate aspartate shuttle component in liver.
Mol Genet Metab Rep. 2023 Mar 16;35:100967. doi: 10.1016/j.ymgmr.2023.100967. eCollection 2023 Jun.
5
Metabolic derangements in deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier.
Hepatol Res. 2005 Oct;33(2):181-4. doi: 10.1016/j.hepres.2005.09.031. Epub 2005 Sep 30.
6
Metabolic basis and treatment of citrin deficiency.
J Inherit Metab Dis. 2021 Jan;44(1):110-117. doi: 10.1002/jimd.12294. Epub 2020 Aug 26.
7
Citrin deficiency: Does the reactivation of liver aralar-1 come into play and promote HCC development?
Biochimie. 2021 Nov;190:20-23. doi: 10.1016/j.biochi.2021.06.018. Epub 2021 Jul 3.
8
Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia.
Mol Genet Metab Rep. 2014 Jan 14;1:42-50. doi: 10.1016/j.ymgmr.2013.12.002. eCollection 2014.
9
Citrin/mitochondrial glycerol-3-phosphate dehydrogenase double knock-out mice recapitulate features of human citrin deficiency.
J Biol Chem. 2007 Aug 24;282(34):25041-52. doi: 10.1074/jbc.M702031200. Epub 2007 Jun 25.
10
Pathogenesis and Management of Citrin Deficiency.
Intern Med. 2024 Jul 15;63(14):1977-1986. doi: 10.2169/internalmedicine.2595-23. Epub 2023 Nov 13.

引用本文的文献

1
Current Understanding of Pathogenic Mechanisms and Disease Models of Citrin Deficiency.
J Inherit Metab Dis. 2025 Mar;48(2):e70021. doi: 10.1002/jimd.70021.
2
Glycerol-3-phosphate activates ChREBP, FGF21 transcription and lipogenesis in Citrin Deficiency.
bioRxiv. 2024 Dec 27:2024.12.27.630525. doi: 10.1101/2024.12.27.630525.
3
My path to citrin deficiency.
J Inherit Metab Dis. 2025 Jan;48(1):e12818. doi: 10.1002/jimd.12818. Epub 2024 Nov 24.
5
Calcium signaling in mitochondrial intermembrane space.
Biochem Soc Trans. 2024 Oct 30;52(5):2215-2229. doi: 10.1042/BST20240319.
6
The therapeutic landscape of citrin deficiency.
J Inherit Metab Dis. 2024 Nov;47(6):1157-1174. doi: 10.1002/jimd.12768. Epub 2024 Jul 17.

本文引用的文献

1
The Warburg effect: Saturation of mitochondrial NADH shuttles triggers aerobic lactate fermentation.
Mol Cell. 2022 Sep 1;82(17):3119-3121. doi: 10.1016/j.molcel.2022.08.004.
2
Saturation of the mitochondrial NADH shuttles drives aerobic glycolysis in proliferating cells.
Mol Cell. 2022 Sep 1;82(17):3270-3283.e9. doi: 10.1016/j.molcel.2022.07.007. Epub 2022 Aug 15.
3
Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency.
Trends Endocrinol Metab. 2022 Aug;33(8):539-553. doi: 10.1016/j.tem.2022.05.002. Epub 2022 Jun 17.
4
Clinical manifestation and long-term outcome of citrin deficiency: Report from a nationwide study in Japan.
J Inherit Metab Dis. 2022 May;45(3):431-444. doi: 10.1002/jimd.12483. Epub 2022 Feb 25.
5
Citrin mediated metabolic rewiring in response to altered basal subcellular Ca homeostasis.
Commun Biol. 2022 Jan 20;5(1):76. doi: 10.1038/s42003-022-03019-2.
7
The context-specific roles of urea cycle enzymes in tumorigenesis.
Mol Cell. 2021 Sep 16;81(18):3749-3759. doi: 10.1016/j.molcel.2021.08.005. Epub 2021 Aug 31.
8
Increased demand for NAD relative to ATP drives aerobic glycolysis.
Mol Cell. 2021 Feb 18;81(4):691-707.e6. doi: 10.1016/j.molcel.2020.12.012. Epub 2020 Dec 30.
9
KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth.
Nat Metab. 2020 Dec;2(12):1373-1381. doi: 10.1038/s42255-020-00315-1. Epub 2020 Nov 23.
10
The malate-aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway.
IUBMB Life. 2020 Nov;72(11):2241-2259. doi: 10.1002/iub.2367. Epub 2020 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验