Suppr超能文献

基于圆填充算法的应力场驱动共形晶格设计

Stress-field driven conformal lattice design using circle packing algorithm.

作者信息

Liu Fuyuan, Chen Min, Wang Lizhe, Luo Tianheng, Chen Geng

机构信息

School of Advanced Technology, Xi'an Jiaotong - Liverpool, University, Suzhou, 215000, Jiangsu, China.

School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100000, Beijing, China.

出版信息

Heliyon. 2023 Mar 13;9(3):e14448. doi: 10.1016/j.heliyon.2023.e14448. eCollection 2023 Mar.

Abstract

Reliable extreme lightweight is the pursuit in many high-end manufacturing areas. Aided by additive manufacturing (AM), lattice material has become a promising candidate for lightweight optimization. Configuration of lattice units at the material level and the distribution of lattice units at the structure level are the two main research directions recently. This paper proposes a generative strategy for lattice infilling optimization using organic strut-based lattices. A sphere packing algorithm driven by von Mises stress fields determines the lattice distribution density. Two typical configurations, Voronoi polygons and Delaunay triangles, are adopted to constitute the frames, respectively. Based on finite element analysis, a simplified truss model is utilized to evaluate the lattice distribution in terms of mechanical properties. Optimization parameters, including node number, mapping gradient, and the range of varying circle size, are investigated through the genetic algorithm (GA). Multiple feasible solutions are obtained for further solidification modelling. To avoid the stress concentration, the organic strut-based lattice units are created by the iso-surface modelling method. The effectiveness of the proposed generative approach is illustrated through a classical 3-point bending beam. The stiffness of the optimized structure, verified through experimental testing, has increased 80% over the one using the traditional uniform body center cubic (BCC) lattice distribution.

摘要

可靠的极致轻量化是许多高端制造领域所追求的目标。在增材制造(AM)的辅助下,晶格材料已成为轻量化优化的一个有前途的候选材料。材料层面的晶格单元构型和结构层面的晶格单元分布是近来两个主要的研究方向。本文提出了一种基于有机支柱晶格的晶格填充优化生成策略。由冯·米塞斯应力场驱动的球体填充算法确定晶格分布密度。分别采用两种典型构型,即Voronoi多边形和Delaunay三角形来构成框架。基于有限元分析,利用简化桁架模型从力学性能方面评估晶格分布。通过遗传算法(GA)研究了包括节点数、映射梯度和变圆尺寸范围在内的优化参数。获得多个可行解以进行进一步的凝固建模。为避免应力集中,采用等值面建模方法创建基于有机支柱的晶格单元。通过经典的三点弯曲梁说明了所提出生成方法的有效性。经实验测试验证,优化结构的刚度比使用传统均匀体心立方(BCC)晶格分布的结构提高了80%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03c9/10031376/bffe1c7d1eed/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验