Suppr超能文献

第八版TNM分期标准在小细胞肺癌合并症中的预后意义

Prognostic significance of eighth edition TNM stage criteria in combined small-cell lung cancer.

作者信息

Zhao Ziran, Gao Yibo, Tan Fengwei, Xue Qi, Gao Shugeng, He Jie

机构信息

Thoracic Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Front Oncol. 2023 Mar 8;13:1018288. doi: 10.3389/fonc.2023.1018288. eCollection 2023.

Abstract

OBJECTIVES

This study aimed to evaluate the prognostic significance of the eighth edition TNM stage criteria in patients with combined small-cell lung cancer (C-SCLC) on a population level.

METHODS

Using the Surveillance, Epidemiology, and End Results (SEER) database, patients diagnosed with C-SCLC (histology code 8245) between the years 2004 and 2015 were identified. We performed a Kaplan-Meier analysis and used the multivariable cox regression proportional hazards model to obtain prognostic overall survival estimates for each group of patients.

RESULTS

A total of 477 patients diagnosed with C-SCLC were identified. The T, N, M, TNM, and combined TNM stage status of the eighth edition were all significant prognostic factors for patients' overall survivals, with the best discrimination identified in the combined stages. Surgery was also found to be a prognostic factor (HR =1.95, 95%CI =1.49-2.56, p<0.01) for patients with C-SCLC.

CONCLUSIONS

The combined eighth edition of the TNM staging criteria shows reliable prognostic significance in patients with C-SCLC. Moreover, surgery might be significant for improving the patients' prognosis.

摘要

目的

本研究旨在在人群水平上评估第八版TNM分期标准对合并小细胞肺癌(C-SCLC)患者的预后意义。

方法

利用监测、流行病学和最终结果(SEER)数据库,确定2004年至2015年间诊断为C-SCLC(组织学编码8245)的患者。我们进行了Kaplan-Meier分析,并使用多变量cox回归比例风险模型来获得每组患者的预后总生存估计值。

结果

共确定了477例诊断为C-SCLC的患者。第八版的T、N、M、TNM和合并TNM分期状态均为患者总生存的显著预后因素,其中合并分期的区分度最佳。手术也被发现是C-SCLC患者的一个预后因素(HR =1.95,95%CI =1.49-2.56,p<0.01)。

结论

第八版TNM分期标准在C-SCLC患者中显示出可靠的预后意义。此外,手术可能对改善患者预后具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07df/10031101/a3257d09be5e/fonc-13-1018288-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验