Suppr超能文献

ADCoC:基于自适应分布建模的协作聚类,用于从神经影像数据中解析疾病异质性

ADCoC: Adaptive Distribution Modeling Based Collaborative Clustering for Disentangling Disease Heterogeneity from Neuroimaging Data.

作者信息

Liu Hangfan, Grothe Michel J, Rashid Tanweer, Labrador-Espinosa Miguel A, Toledo Jon B, Habes Mohamad

机构信息

Neuroimage Analytics Laboratory (NAL) and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA.

Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.

出版信息

IEEE Trans Emerg Top Comput Intell. 2023 Apr;7(2):308-318. doi: 10.1109/tetci.2021.3136587. Epub 2022 Jan 5.

Abstract

Conventional clustering techniques for neuroimaging applications usually focus on capturing differences between given subjects, while neglecting arising differences between features and the potential bias caused by degraded data quality. In practice, collected neuroimaging data are often inevitably contaminated by noise, which may lead to errors in clustering and clinical interpretation. Additionally, most methods ignore the importance of feature grouping towards optimal clustering. In this paper, we exploit the underlying heterogeneous clusters of features to serve as weak supervision for improved clustering of subjects, which is achieved by simultaneously clustering subjects and features via nonnegative matrix tri-factorization. In order to suppress noise, we further introduce adaptive regularization based on coefficient distribution modeling. Particularly, unlike conventional sparsity regularization techniques that assume zero mean of the coefficients, we form the distributions using the data of interest so that they could better fit the non-negative coefficients. In this manner, the proposed approach is expected to be more effective and robust against noise. We compared the proposed method with standard techniques and recently published methods demonstrating superior clustering performance on synthetic data with known ground truth labels. Furthermore, when applying our proposed technique to magnetic resonance imaging (MRI) data from a cohort of patients with Parkinson's disease, we identified two stable and highly reproducible patient clusters characterized by frontal and posterior cortical/medial temporal atrophy patterns, respectively, which also showed corresponding differences in cognitive characteristics.

摘要

用于神经成像应用的传统聚类技术通常专注于捕捉给定受试者之间的差异,而忽略了特征之间出现的差异以及数据质量下降所导致的潜在偏差。在实际应用中,收集到的神经成像数据往往不可避免地受到噪声污染,这可能导致聚类和临床解释出现错误。此外,大多数方法忽略了特征分组对优化聚类的重要性。在本文中,我们利用特征的潜在异质聚类作为弱监督,以改进受试者的聚类,这是通过非负矩阵三因子分解同时对受试者和特征进行聚类来实现的。为了抑制噪声,我们进一步引入基于系数分布建模的自适应正则化。特别是,与假设系数均值为零的传统稀疏正则化技术不同,我们使用感兴趣的数据形成分布,以便它们能够更好地拟合非负系数。通过这种方式,所提出的方法预计在抗噪声方面更有效且更稳健。我们将所提出的方法与标准技术以及最近发表的方法进行了比较,结果表明该方法在具有已知真实标签的合成数据上具有卓越的聚类性能。此外,当将我们提出的技术应用于一组帕金森病患者的磁共振成像(MRI)数据时,我们识别出两个稳定且高度可重复的患者聚类,分别以前额叶和后皮质/内侧颞叶萎缩模式为特征,并且在认知特征上也表现出相应的差异。

相似文献

1
ADCoC: Adaptive Distribution Modeling Based Collaborative Clustering for Disentangling Disease Heterogeneity from Neuroimaging Data.
IEEE Trans Emerg Top Comput Intell. 2023 Apr;7(2):308-318. doi: 10.1109/tetci.2021.3136587. Epub 2022 Jan 5.
2
Adaptive Sparsity Regularization Based Collaborative Clustering for Cancer Prognosis.
Med Image Comput Comput Assist Interv. 2019 Oct;11767:583-592. doi: 10.1007/978-3-030-32251-9_64. Epub 2019 Oct 10.
3
Robust Collaborative Clustering of Subjects and Radiomic Features for Cancer Prognosis.
IEEE Trans Biomed Eng. 2020 Oct;67(10):2735-2744. doi: 10.1109/TBME.2020.2969839. Epub 2020 Jan 27.
5
COLLABORATIVE CLUSTERING OF SUBJECTS AND RADIOMIC FEATURES FOR PREDICTING CLINICAL OUTCOMES OF RECTAL CANCER PATIENTS.
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1303-1306. doi: 10.1109/ISBI.2019.8759512. Epub 2019 Jul 11.
6
Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix Factorization.
J Imaging. 2021 Sep 28;7(10):194. doi: 10.3390/jimaging7100194.
7
Hessian regularization based symmetric nonnegative matrix factorization for clustering gene expression and microbiome data.
Methods. 2016 Dec 1;111:80-84. doi: 10.1016/j.ymeth.2016.06.017. Epub 2016 Jun 20.
9
Cortical atrophy patterns in early Parkinson's disease patients using hierarchical cluster analysis.
Parkinsonism Relat Disord. 2018 May;50:3-9. doi: 10.1016/j.parkreldis.2018.02.006. Epub 2018 Feb 8.
10
ComClus: A Self-Grouping Framework for Multi-Network Clustering.
IEEE Trans Knowl Data Eng. 2018 Mar 1;30(3):435-448. doi: 10.1109/TKDE.2017.2771762. Epub 2017 Nov 9.

引用本文的文献

1
Cortical α4β2-nicotinic acetylcholine receptors and cognitive decline in Parkinson's disease.
J Parkinsons Dis. 2025 Mar;15(2):374-386. doi: 10.1177/1877718X241313373. Epub 2025 Feb 2.
3
Disentangling tau and brain atrophy cluster heterogeneity across the Alzheimer's disease continuum.
Alzheimers Dement (N Y). 2022 May 23;8(1):e12305. doi: 10.1002/trc2.12305. eCollection 2022.

本文引用的文献

1
Co-Clustering on Bipartite Graphs for Robust Model Fitting.
IEEE Trans Image Process. 2022;31:6605-6620. doi: 10.1109/TIP.2022.3214073. Epub 2022 Oct 26.
2
Exploring Uncertainty Measures in Bayesian Deep Attentive Neural Networks for Prostate Zonal Segmentation.
IEEE Access. 2020;8:151817-151828. doi: 10.1109/ACCESS.2020.3017168. Epub 2020 Aug 17.
3
Disentangling Heterogeneity in Alzheimer's Disease and Related Dementias Using Data-Driven Methods.
Biol Psychiatry. 2020 Jul 1;88(1):70-82. doi: 10.1016/j.biopsych.2020.01.016. Epub 2020 Jan 31.
4
Adaptive Sparsity Regularization Based Collaborative Clustering for Cancer Prognosis.
Med Image Comput Comput Assist Interv. 2019 Oct;11767:583-592. doi: 10.1007/978-3-030-32251-9_64. Epub 2019 Oct 10.
5
Multi-instance Deep Learning with Graph Convolutional Neural Networks for Diagnosis of Kidney Diseases Using Ultrasound Imaging.
Uncertain Safe Util Machine Learn Med Imaging Clin Image Based Proced (2019). 2019 Oct;11840:146-154. doi: 10.1007/978-3-030-32689-0_15. Epub 2019 Oct 7.
6
From Rank Estimation to Rank Approximation: Rank Residual Constraint for Image Restoration.
IEEE Trans Image Process. 2019 Dec 12. doi: 10.1109/TIP.2019.2958309.
7
COLLABORATIVE CLUSTERING OF SUBJECTS AND RADIOMIC FEATURES FOR PREDICTING CLINICAL OUTCOMES OF RECTAL CANCER PATIENTS.
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1303-1306. doi: 10.1109/ISBI.2019.8759512. Epub 2019 Jul 11.
8
Multiscale Functional Clustering Reveals Frequency Dependent Brain Organization in Type II Focal Cortical Dysplasia With Sleep Hypermotor Epilepsy.
IEEE Trans Biomed Eng. 2019 Oct;66(10):2831-2839. doi: 10.1109/TBME.2019.2896893. Epub 2019 Feb 1.
9
White matter lesions: Spatial heterogeneity, links to risk factors, cognition, genetics, and atrophy.
Neurology. 2018 Sep 4;91(10):e964-e975. doi: 10.1212/WNL.0000000000006116. Epub 2018 Aug 3.
10
Non-Negative Matrix Factorizations for Multiplex Network Analysis.
IEEE Trans Pattern Anal Mach Intell. 2019 Apr;41(4):928-940. doi: 10.1109/TPAMI.2018.2821146. Epub 2018 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验