De Potter Tom, Valeriano Chiara, Buytaert Dimitri, Bouchez Stefaan, Ector Joris
Cardiovascular Center Aalst, Arrhythmia Unit, OLV Hospital, Aalst, Belgium.
Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
Front Cardiovasc Med. 2023 Mar 8;10:1140153. doi: 10.3389/fcvm.2023.1140153. eCollection 2023.
For critically ill patients, hemodynamic fluctuations can be life-threatening; this is particularly true for patients experiencing cardiac comorbidities. Patients may suffer from problems with heart contractility and rate, vascular tone, and intravascular volume, resulting in hemodynamic instability. Unsurprisingly, hemodynamic support provides a crucial and specific benefit during percutaneous ablation of ventricular tachycardia (VT). Mapping, understanding, and treating the arrhythmia during sustained VT without hemodynamic support is often infeasible due to patient hemodynamic collapse. Substrate mapping in sinus rhythm can be successful for VT ablation, but there are limitations to this approach. Patients with nonischemic cardiomyopathy may present for ablation without exhibiting useful endocardial and/or epicardial substrate-based ablation targets, either due to diffuse extent or a lack of identifiable substrate. This leaves activation mapping during ongoing VT as the only viable diagnostic strategy. By enhancing cardiac output, percutaneous left ventricular assist devices (pLVAD) may facilitate conditions for mapping that would otherwise be incompatible with survival. However, the optimal mean arterial pressure to maintain end-organ perfusion in presence of nonpulsatile flow remains unknown. Near infrared oxygenation monitoring during pLVAD support provides assessment of critical end-organ perfusion during VT, enabling successful mapping and ablation with the continual assurance of adequate brain oxygenation. This focused review provides practical use case scenarios for such an approach, which aims to allow mapping and ablation of ongoing VT while drastically reducing the risk of ischemic brain injury.
对于重症患者,血流动力学波动可能危及生命;对于患有心脏合并症的患者尤其如此。患者可能会出现心脏收缩力和心率、血管张力以及血管内容量方面的问题,从而导致血流动力学不稳定。不出所料,在室性心动过速(VT)的经皮消融过程中,血流动力学支持具有至关重要的特定益处。在没有血流动力学支持的情况下,在持续性室速期间进行心律失常的标测、理解和治疗通常因患者血流动力学崩溃而不可行。窦性心律下的基质标测对于室速消融可能是成功的,但这种方法存在局限性。患有非缺血性心肌病的患者在进行消融时,可能由于病变范围弥漫或缺乏可识别的基质,而无法显示出基于心内膜和/或心外膜基质的有用消融靶点。这使得在持续性室速期间进行激动标测成为唯一可行的诊断策略。通过提高心输出量,经皮左心室辅助装置(pLVAD)可能有助于创造标测条件,否则这些条件将与生存不相容。然而,在存在非搏动性血流的情况下,维持终末器官灌注的最佳平均动脉压仍然未知。在pLVAD支持期间进行近红外氧合监测可评估室速期间关键终末器官的灌注情况,从而在持续确保充足脑氧合的情况下成功进行标测和消融。本综述重点介绍了这种方法的实际应用案例,旨在实现持续性室速的标测和消融,同时大幅降低缺血性脑损伤的风险。