Zhang Anqi, Lee Jae-Hyun, Lieber Charles M
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Center for Nanomedicine, Institute for Basic Science (IBS), Advanced Science Institute, Yonsei University, Seoul, 03722, Korea.
Nano Today. 2021 Jun;38. doi: 10.1016/j.nantod.2021.101135. Epub 2021 Mar 20.
Bioelectronics explores the use of electronic devices for applications in signal transduction at their interfaces with biological systems. The miniaturization of the bioelectronic systems has enabled seamless integration at these interfaces and is providing new scientific and technological opportunities. In particular, nanowire-based devices can yield smaller sized and unique geometry detectors that are difficult to access with standard techniques, and thereby can provide advantages in sensitivity with reduced invasiveness. In this review, we focus on nanowire-enabled bioelectronics. First, we provide an overview of synthetic studies for designed growth of semiconductor nanowires of which structure and composition are controlled to enable key elements for bioelectronic devices. Second, we review nanowire field-effect transistor sensors for highly sensitive detection of biomolecules, their applications in diagnosis and drug discovery, and methods for sensitivity enhancement. We then turn to recent progress in nanowire-enabled studies of electrogenic cells, including cardiomyocytes and neurons. Representative advances in electrical recording using nanowire electronic devices for single cell measurements, cell network mapping, and three-dimensional recordings of synthetic and natural tissues, and in vivo brain mapping are highlighted. Finally, we overview the key challenges and opportunities of nanowires for fundamental research and translational applications.
生物电子学探索电子设备在与生物系统的界面处用于信号转导应用的情况。生物电子系统的小型化实现了在这些界面处的无缝集成,并提供了新的科学技术机遇。特别是,基于纳米线的设备可以生产出尺寸更小、几何形状独特的探测器,而这些探测器用标准技术难以实现,因此可以在提高灵敏度的同时降低侵入性。在本综述中,我们聚焦于基于纳米线的生物电子学。首先,我们概述了半导体纳米线设计生长的合成研究,其结构和组成经过控制,以实现生物电子设备的关键元件。其次,我们回顾了用于高灵敏度检测生物分子的纳米线场效应晶体管传感器、它们在诊断和药物发现中的应用以及提高灵敏度的方法。然后,我们转向基于纳米线的产电细胞研究的最新进展,包括心肌细胞和神经元。重点介绍了使用纳米线电子设备进行单细胞测量、细胞网络绘图以及合成和天然组织的三维记录以及体内脑图谱绘制在电记录方面的代表性进展。最后,我们概述了纳米线在基础研究和转化应用方面的关键挑战和机遇。