Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China.
School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
Adv Sci (Weinh). 2023 May;10(15):e2207224. doi: 10.1002/advs.202207224. Epub 2023 Mar 27.
Heterotopic ossification (HO) is a double-edged sword. Pathological HO presents as an undesired clinical complication, whereas controlled heterotopic bone formation by synthetic osteoinductive materials shows promising therapeutic potentials for bone regeneration. However, the mechanism of material-induced heterotopic bone formation remains largely unknown. Early acquired HO being usually accompanied by severe tissue hypoxia prompts the hypothesis that hypoxia caused by the implantation coordinates serial cellular events and ultimately induces heterotopic bone formation in osteoinductive materials. The data presented herein shows a link between hypoxia, macrophage polarization to M2, osteoclastogenesis, and material-induced bone formation. Hypoxia inducible factor-1α (HIF-1α), a crucial mediator of cellular responses to hypoxia, is highly expressed in an osteoinductive calcium phosphate ceramic (CaP) during the early phase of implantation, while pharmacological inhibition of HIF-1α significantly inhibits M2 macrophage, subsequent osteoclast, and material-induced bone formation. Similarly, in vitro, hypoxia enhances M2 macrophage and osteoclast formation. Osteoclast-conditioned medium enhances osteogenic differentiation of mesenchymal stem cells, such enhancement disappears with the presence of HIF-1α inhibitor. Furthermore, metabolomics analysis reveals that hypoxia enhances osteoclastogenesis via the axis of M2/lipid-loaded macrophages. The current findings shed new light on the mechanism of HO and favor the design of more potent osteoinductive materials for bone regeneration.
异位骨化(HO)是一把双刃剑。病理性 HO 是一种不期望出现的临床并发症,而合成成骨诱导材料的可控异位骨形成则显示出对骨再生的有前途的治疗潜力。然而,材料诱导异位骨形成的机制在很大程度上尚不清楚。早期获得的 HO 通常伴随着严重的组织缺氧,这促使人们假设,植入物引起的缺氧协调了一系列细胞事件,并最终诱导成骨诱导材料中的异位骨形成。本文提供的数据表明,缺氧、巨噬细胞向 M2 的极化、破骨细胞形成和材料诱导的骨形成之间存在联系。缺氧诱导因子-1α(HIF-1α)是细胞对缺氧反应的关键介质,在植入物的早期阶段,在一种具有成骨诱导作用的磷酸钙陶瓷(CaP)中高度表达,而 HIF-1α 的药理学抑制显著抑制 M2 巨噬细胞、随后的破骨细胞和成骨诱导材料的骨形成。同样,在体外,缺氧增强了 M2 巨噬细胞和成骨细胞的形成。破骨细胞条件培养基增强间充质干细胞的成骨分化,而存在 HIF-1α 抑制剂时,这种增强作用消失。此外,代谢组学分析表明,缺氧通过 M2/脂质负载巨噬细胞轴增强破骨细胞形成。这些发现为 HO 的机制提供了新的见解,并有利于设计更有效的用于骨再生的成骨诱导材料。