Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark.
Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, 101408, P. R. China.
Macromol Biosci. 2023 Aug;23(8):e2200528. doi: 10.1002/mabi.202200528. Epub 2023 Apr 14.
The immobilization of enzymes on solid supports is an important challenge in biotechnology and biomedicine. In contrast to other methods, enzyme deposition in polymer brushes offers the benefit of high protein loading that preserves enzymatic activity in part due to the hydrated 3D environment that is available within the brush structure. The authors equipped planar and colloidal silica surfaces with poly(2-(diethylamino)ethyl methacrylate)-based brushes to immobilize Thermoplasma acidophilum histidine ammonia lyase, and analyzed the amount and activity of the immobilized enzyme. The poly(2-(diethylamino)ethyl methacrylate) brushes are attached to the solid silica supports either via a "grafting-to" or a "grafting-from" method. It is found that the grafting-from method results in higher amounts of deposited polymer and, consequently, higher amounts of Thermoplasma acidophilum histidine ammonia lyase. All polymer brush-modified surfaces show preserved catalytic activity of the deposited Thermoplasma acidophilum histidine ammonia lyase. However, immobilizing the enzyme in polymer brushes using the grafting-from method resulted in twice the enzymatic activity from the grafting-to approach, illustrating a successful enzyme deposition on a solid support.
酶在固体载体上的固定化是生物技术和生物医学中的一个重要挑战。与其他方法相比,聚合物刷中的酶沉积具有高蛋白质负载的优势,部分原因是在刷状结构中存在水合的 3D 环境,从而保持了酶的活性。作者在平面和胶体二氧化硅表面上装备了基于聚(2-(二乙基氨基)乙基甲基丙烯酸酯)的刷,以固定嗜热酸性菌组氨酸氨裂解酶,并分析了固定化酶的量和活性。聚(2-(二乙基氨基)乙基甲基丙烯酸酯)刷通过“接枝到”或“从接枝”方法附着在固体二氧化硅载体上。结果发现,从接枝方法得到的聚合物沉积量更高,因此固定的嗜热酸性菌组氨酸氨裂解酶的量也更高。所有聚合物刷修饰表面都显示出固定化的嗜热酸性菌组氨酸氨裂解酶的催化活性得以保留。然而,通过从接枝方法将酶固定在聚合物刷中,酶的活性是从接枝到方法的两倍,这表明在固体载体上成功地进行了酶沉积。