Suppr超能文献

基于开源深度学习工具的端到端管道,用于可靠分析卵巢复杂 3D 图像。

An end-to-end pipeline based on open source deep learning tools for reliable analysis of complex 3D images of ovaries.

机构信息

INRAE, Fish Physiology and Genomics Institute, 16 Allee Henri Fabre, Rennes 35000, France.

BIOSIT, UAR 3480 US 018, Université de Rennes, 2 rue Prof. Leon Bernard, Rennes 35042, France.

出版信息

Development. 2023 Apr 1;150(7). doi: 10.1242/dev.201185. Epub 2023 Apr 3.

Abstract

Computational analysis of bio-images by deep learning (DL) algorithms has made exceptional progress in recent years and has become much more accessible to non-specialists with the development of ready-to-use tools. The study of oogenesis mechanisms and female reproductive success has also recently benefited from the development of efficient protocols for three-dimensional (3D) imaging of ovaries. Such datasets have a great potential for generating new quantitative data but are, however, complex to analyze due to the lack of efficient workflows for 3D image analysis. Here, we have integrated two existing open-source DL tools, Noise2Void and Cellpose, into an analysis pipeline dedicated to 3D follicular content analysis, which is available on Fiji. Our pipeline was developed on larvae and adult medaka ovaries but was also successfully applied to different types of ovaries (trout, zebrafish and mouse). Image enhancement, Cellpose segmentation and post-processing of labels enabled automatic and accurate quantification of these 3D images, which exhibited irregular fluorescent staining, low autofluorescence signal or heterogeneous follicles sizes. In the future, this pipeline will be useful for extensive cellular phenotyping in fish or mammals for developmental or toxicology studies.

摘要

深度学习(DL)算法的生物图像计算分析近年来取得了非凡的进展,随着即用型工具的发展,非专业人员也更容易使用。高效的三维(3D)卵巢成像技术的发展也使卵母细胞发生机制和女性生殖成功的研究受益。这些数据集具有生成新的定量数据的巨大潜力,但由于缺乏有效的 3D 图像分析工作流程,因此分析起来非常复杂。在这里,我们将两个现有的开源 DL 工具,Noise2Void 和 Cellpose,集成到一个专门用于 3D 卵泡内容分析的分析管道中,该管道可在 Fiji 上使用。我们的管道是在幼虫和成年斑马鱼卵巢上开发的,但也成功地应用于不同类型的卵巢(鳟鱼、斑马鱼和老鼠)。图像增强、Cellpose 分割和标签的后处理实现了这些 3D 图像的自动和准确量化,这些图像具有不规则的荧光染色、低自发荧光信号或异质卵泡大小。将来,该管道将有助于鱼类或哺乳动物的广泛细胞表型研究,用于发育或毒理学研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验