Suppr超能文献

基于多力学指标预测二维人体模型的跌倒风险。

Predicting fall risk using multiple mechanics-based metrics for a planar biped model.

机构信息

Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America.

出版信息

PLoS One. 2023 Mar 27;18(3):e0283466. doi: 10.1371/journal.pone.0283466. eCollection 2023.

Abstract

For both humans and robots, falls are undesirable, motivating the development of fall prediction models. Many mechanics-based fall risk metrics have been proposed and validated to varying degrees, including the extrapolated center of mass, the foot rotation index, Lyapunov exponents, joint and spatiotemporal variability, and mean spatiotemporal parameters. To obtain a best-case estimate of how well these metrics can predict fall risk both individually and in combination, this work used a planar six-link hip-knee-ankle biped model with curved feet walking at speeds ranging from 0.8 m/s to 1.2 m/s. The true number of steps to fall was determined using the mean first passage times from a Markov chain describing the gaits. In addition, each metric was estimated using the Markov chain of the gait. Because calculating the fall risk metrics from the Markov chain had not been done before, the results were validated using brute force simulations. Except for the short-term Lyapunov exponents, the Markov chains could accurately calculate the metrics. Using the Markov chain data, quadratic fall prediction models were created and evaluated. The models were further evaluated using differing length brute force simulations. None of the 49 tested fall risk metrics could accurately predict the number of steps to fall by themselves. However, when all the fall risk metrics except the Lyapunov exponents were combined into a single model, the accuracy increased substantially. These results suggest that multiple fall risk metrics must be combined to obtain a useful measure of stability. As expected, as the number of steps used to calculate the fall risk metrics increased, the accuracy and precision increased. This led to a corresponding increase in the accuracy and precision of the combined fall risk model. 300 step simulations seemed to provide the best tradeoff between accuracy and using as few steps as possible.

摘要

对于人和机器人来说,摔倒都是不理想的,这促使了摔倒预测模型的发展。已经提出并验证了许多基于力学的摔倒风险指标,这些指标在不同程度上包括外推质心、脚旋转指数、李雅普诺夫指数、关节和时空变异性以及平均时空参数。为了获得这些指标单独和组合使用时预测摔倒风险的最佳估计,本工作使用了一个具有弯曲脚的平面六连杆髋膝踝双足模型,以 0.8m/s 到 1.2m/s 的速度行走。通过描述步态的马尔可夫链,使用平均首次通过时间来确定摔倒的真实步数。此外,使用步态的马尔可夫链来估计每个指标。因为之前没有从马尔可夫链计算摔倒风险指标,所以使用暴力模拟验证了结果。除了短期李雅普诺夫指数外,马尔可夫链可以准确计算指标。使用马尔可夫链数据创建并评估了二次摔倒预测模型。使用不同长度的暴力模拟进一步评估了这些模型。在所测试的 49 个摔倒风险指标中,没有一个能够单独准确地预测摔倒的步数。然而,当除了李雅普诺夫指数之外的所有摔倒风险指标都组合成一个单一模型时,准确性大大提高。这些结果表明,必须结合多个摔倒风险指标才能获得有用的稳定性度量。正如预期的那样,随着用于计算摔倒风险指标的步数增加,准确性和精度也会增加。这导致了组合摔倒风险模型的准确性和精度相应提高。300 步模拟似乎在准确性和使用尽可能少的步数之间提供了最佳的权衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af0/10042378/7b667b80d666/pone.0283466.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验