Suppr超能文献

在一项关于死亡率的流行病学研究中,为了调整饮食数据中的偏度和相关性,同时处理随机测量误差,提出了一种多变量联合模型。

A multivariate joint model to adjust for random measurement error while handling skewness and correlation in dietary data in an epidemiologic study of mortality.

机构信息

StatsDecide Analytics and Consulting Ltd, Nakuru, Kenya.

StatsDecide Analytics and Consulting Ltd, Nakuru, Kenya.

出版信息

Ann Epidemiol. 2023 Jun;82:8-15. doi: 10.1016/j.annepidem.2023.03.007. Epub 2023 Mar 25.

Abstract

PURPOSE

A substantial proportion of global deaths is attributed to unhealthy diets, which can be assessed at baseline or longitudinally. We demonstrated how to simultaneously correct for random measurement error, correlations, and skewness in the estimation of associations between dietary intake and all-cause mortality.

METHODS

We applied a multivariate joint model (MJM) that simultaneously corrected for random measurement error, skewness, and correlation among longitudinally measured intake levels of cholesterol, total fat, dietary fiber, and energy with all-cause mortality using US National Health and Nutrition Examination Survey linked to the National Death Index mortality data. We compared MJM with the mean method that assessed intake levels as the mean of a person's intake.

RESULTS

The estimates from MJM were larger than those from the mean method. For instance, the logarithm of hazard ratio for dietary fiber intake increased by 14 times (from -0.04 to -0.60) with the MJM method. This translated into a relative hazard of death of 0.55 (95% credible interval: 0.45, 0.65) with the MJM and 0.96 (95% credible interval: 0.95, 0.97) with the mean method.

CONCLUSIONS

MJM adjusts for random measurement error and flexibly addresses correlations and skewness among longitudinal measures of dietary intake when estimating their associations with death.

摘要

目的

不健康的饮食是导致全球死亡的主要原因之一,可以在基线或纵向进行评估。我们展示了如何同时纠正随机测量误差、相关性和饮食摄入与全因死亡率之间关联估计中的偏度。

方法

我们应用了一种多变量联合模型 (MJM),该模型同时纠正了随机测量误差、偏度和胆固醇、总脂肪、膳食纤维和能量的纵向测量摄入量之间的相关性,使用美国国家健康和营养检查调查与国家死亡指数死亡率数据相关联。我们将 MJM 与平均法进行了比较,平均法将摄入量评估为一个人的摄入量的平均值。

结果

MJM 的估计值大于平均法的估计值。例如,膳食纤维摄入量的对数危险比通过 MJM 方法增加了 14 倍(从-0.04 到-0.60)。这转化为死亡率的相对风险为 0.55(95%可信区间:0.45,0.65),MJM 和 0.96(95%可信区间:0.95,0.97)与平均方法。

结论

MJM 可调整随机测量误差,并在估计饮食摄入的纵向测量与其与死亡的关联时灵活处理相关性和偏度。

相似文献

5
Measurement error and dietary intake.
Adv Exp Med Biol. 1998;445:139-45. doi: 10.1007/978-1-4899-1959-5_9.
8
Adult Intake of Minimally Processed Fruits and Vegetables: Associations with Cardiometabolic Disease Risk Factors.
J Acad Nutr Diet. 2016 Sep;116(9):1387-1394. doi: 10.1016/j.jand.2016.03.019. Epub 2016 May 10.
9
Correlated measurement error--implications for nutritional epidemiology.
Int J Epidemiol. 2004 Dec;33(6):1373-81. doi: 10.1093/ije/dyh138. Epub 2004 Aug 27.
10
Relationship between frequency of eating and cardiovascular disease mortality in U.S. adults: the NHANES III follow-up study.
Ann Epidemiol. 2016 Aug;26(8):527-533. doi: 10.1016/j.annepidem.2016.06.006. Epub 2016 Jun 15.

本文引用的文献

2
3
Differential relationship between dietary fat and cholesterol on total mortality in Korean population cohorts.
J Intern Med. 2021 Oct;290(4):866-877. doi: 10.1111/joim.13328. Epub 2021 Jun 11.
6
Lifestyle Risk Factors and All-Cause and Cardiovascular Disease Mortality: Data from the Korean Longitudinal Study of Aging.
Int J Environ Res Public Health. 2019 Aug 22;16(17):3040. doi: 10.3390/ijerph16173040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验