文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

综合分析 scRNA-Seq 和 bulk RNA-Seq 揭示膀胱癌肿瘤免疫微环境的动态变化,并建立一个预后模型。

Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model.

机构信息

Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, People's Republic of China.

Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, People's Republic of China.

出版信息

J Transl Med. 2023 Mar 27;21(1):223. doi: 10.1186/s12967-023-04056-z.


DOI:10.1186/s12967-023-04056-z
PMID:36973787
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10044739/
Abstract

BACKGROUND: The prognostic management of bladder cancer (BLCA) remains a great challenge for clinicians. Recently, bulk RNA-seq sequencing data have been used as a prognostic marker for many cancers but do not accurately detect core cellular and molecular functions in tumor cells. In the current study, bulk RNA-seq and single-cell RNA sequencing (scRNA-seq) data were combined to construct a prognostic model of BLCA. METHODS: BLCA scRNA-seq data were downloaded from Gene Expression Omnibus (GEO) database. Bulk RNA-seq data were obtained from the UCSC Xena. The R package "Seurat" was used for scRNA-seq data processing, and the uniform manifold approximation and projection (UMAP) were utilized for downscaling and cluster identification. The FindAllMarkers function was used to identify marker genes for each cluster. The limma package was used to obtain differentially expressed genes (DEGs) affecting overall survival (OS) in BLCA patients. Weighted gene correlation network analysis (WGCNA) was used to identify BLCA key modules. The intersection of marker genes of core cells and genes of BLCA key modules and DEGs was used to construct a prognostic model by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) analyses. Differences in clinicopathological characteristics, immune microenvironment, immune checkpoints, and chemotherapeutic drug sensitivity between the high and low-risk groups were also investigated. RESULTS: scRNA-seq data were analyzed to identify 19 cell subpopulations and 7 core cell types. The ssGSEA showed that all 7 core cell types were significantly downregulated in tumor samples of BLCA. We identified 474 marker genes from the scRNA-seq dataset, 1556 DEGs from the Bulk RNA-seq dataset, and 2334 genes associated with a key module identified by WGCNA. After performing intersection, univariate Cox, and LASSO analysis, we obtained a prognostic model based on the expression levels of 3 signature genes, namely MAP1B, PCOLCE2, and ELN. The feasibility of the model was validated by an internal training set and two external validation sets. Moreover, patients with high-risk scores are predisposed to experience poor OS, a larger prevalence of stage III-IV, a greater TMB, a higher infiltration of immune cells, and a lesser likelihood of responding favorably to immunotherapy. CONCLUSION: By integrating scRNA-seq and bulk RNA-seq data, we constructed a novel prognostic model to predict the survival of BLCA patients. The risk score is a promising independent prognostic factor that is closely correlated with the immune microenvironment and clinicopathological characteristics.

摘要

背景:膀胱癌(BLCA)的预后管理仍然是临床医生面临的巨大挑战。最近,批量 RNA-seq 测序数据已被用作许多癌症的预后标志物,但不能准确检测肿瘤细胞中的核心细胞和分子功能。在本研究中,将批量 RNA-seq 和单细胞 RNA 测序(scRNA-seq)数据相结合,构建 BLCA 的预后模型。

方法:从基因表达综合数据库(GEO)下载 BLCA scRNA-seq 数据。从 UCSC Xena 获取批量 RNA-seq 数据。使用 R 包“Seurat”处理 scRNA-seq 数据,采用统一流形逼近和投影(UMAP)进行降维和聚类识别。使用 FindAllMarkers 函数鉴定每个聚类的标记基因。使用 limma 包获得影响 BLCA 患者总生存(OS)的差异表达基因(DEGs)。采用加权基因相关网络分析(WGCNA)鉴定 BLCA 关键模块。通过单因素 Cox 和最小绝对值收缩和选择算子(LASSO)分析,将核心细胞的标记基因和 BLCA 关键模块的基因与 DEGs 进行交集,构建预后模型。还研究了高低风险组之间的临床病理特征、免疫微环境、免疫检查点和化疗药物敏感性的差异。

结果:分析 scRNA-seq 数据以鉴定 19 个细胞亚群和 7 个核心细胞类型。ssGSEA 显示,BLCA 肿瘤样本中所有 7 个核心细胞类型均显著下调。从 scRNA-seq 数据集获得 474 个标记基因,从 Bulk RNA-seq 数据集获得 1556 个 DEGs,从 WGCNA 鉴定的关键模块获得 2334 个基因。进行交集、单因素 Cox 和 LASSO 分析后,基于 3 个特征基因(MAP1B、PCOLCE2 和 ELN)的表达水平获得了一个预后模型。该模型通过内部训练集和两个外部验证集进行了验证。此外,高风险评分的患者更倾向于经历不良的 OS、更高的 III-IV 期、更大的 TMB、更高的免疫细胞浸润以及对免疫治疗反应不佳的可能性。

结论:通过整合 scRNA-seq 和批量 RNA-seq 数据,构建了一种新的预测 BLCA 患者生存的预后模型。风险评分是一个有前途的独立预后因素,与免疫微环境和临床病理特征密切相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/18daeb721db3/12967_2023_4056_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/2f457c676d21/12967_2023_4056_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/e7e34b3fc638/12967_2023_4056_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/a3dc44220b10/12967_2023_4056_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/8ee990af17ef/12967_2023_4056_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/8f1f3cc2141a/12967_2023_4056_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/8cf06513d290/12967_2023_4056_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/dc352f6eb88d/12967_2023_4056_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/da1d923b9895/12967_2023_4056_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/b4e085a2115d/12967_2023_4056_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/074f2d2fadf6/12967_2023_4056_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/01fd33f8a6b0/12967_2023_4056_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/18daeb721db3/12967_2023_4056_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/2f457c676d21/12967_2023_4056_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/e7e34b3fc638/12967_2023_4056_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/a3dc44220b10/12967_2023_4056_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/8ee990af17ef/12967_2023_4056_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/8f1f3cc2141a/12967_2023_4056_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/8cf06513d290/12967_2023_4056_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/dc352f6eb88d/12967_2023_4056_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/da1d923b9895/12967_2023_4056_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/b4e085a2115d/12967_2023_4056_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/074f2d2fadf6/12967_2023_4056_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/01fd33f8a6b0/12967_2023_4056_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6782/10044739/18daeb721db3/12967_2023_4056_Fig12_HTML.jpg

相似文献

[1]
Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model.

J Transl Med. 2023-3-27

[2]
Integrating single-cell RNA-seq to identify fibroblast-based molecular subtypes for predicting prognosis and therapeutic response in bladder cancer.

Aging (Albany NY). 2024-7-18

[3]
Integrating Bulk and Single-Cell RNA Sequencing Reveals Heterogeneity, Tumor Microenvironment, and Immunotherapeutic Efficacy Based on Sialylation-Related Genes in Bladder Cancer.

J Inflamm Res. 2023-8-14

[4]
Integration of Single-Cell RNA Sequencing and Bulk RNA Sequencing Data to Establish and Validate a Prognostic Model for Patients With Lung Adenocarcinoma.

Front Genet. 2022-1-27

[5]
Development and validation a prognostic model based on natural killer T cells marker genes for predicting prognosis and characterizing immune status in glioblastoma through integrated analysis of single-cell and bulk RNA sequencing.

Funct Integr Genomics. 2023-8-31

[6]
Expression of hub genes of endothelial cells in glioblastoma-A prognostic model for GBM patients integrating single-cell RNA sequencing and bulk RNA sequencing.

BMC Cancer. 2022-12-6

[7]
Construction of cancer- associated fibroblasts related risk signature based on single-cell RNA-seq and bulk RNA-seq data in bladder urothelial carcinoma.

Front Oncol. 2023-4-14

[8]
Identification of a tumor microenvironment-related seven-gene signature for predicting prognosis in bladder cancer.

BMC Cancer. 2021-6-10

[9]
Exploring the Shared Gene Signatures and Molecular Mechanisms between Bladder Urothelial Carcinoma and Metabolic Syndrome.

Arch Esp Urol. 2023-10

[10]
Key platelet genes play important roles in predicting the prognosis of sepsis.

Sci Rep. 2024-10-9

引用本文的文献

[1]
Construction of a gene-metabolite-microbiome regulatory network reveals novel therapeutic targets in bladder cancer through multi-omics analysis.

Ann Med. 2025-12

[2]
Construction and immunohistochemical validation of a necroptosis-related prognostic signature in bladder cancer and its association with tumor immune infiltration.

Front Genet. 2025-8-14

[3]
Machine learning integration of bulk and single-cell RNA-seq data reveals glycolytic heterogeneity in colorectal cancer.

Med Oncol. 2025-8-30

[4]
Identification of SUMOylation modifiers involved in lung adenocarcinoma progression and Osimertinib resistance by integrated bioinformatics analysis.

Sci Rep. 2025-8-24

[5]
and are mitochondria-related biomarkers associated with immune infiltration in osteoarthritis.

Front Genet. 2025-7-30

[6]
Combining single-cell and bulk RNA sequencing to identify CAF-related signature for prognostic prediction and treatment response in patients with melanoma.

Sci Rep. 2025-8-8

[7]
Single-Cell Sequence and Machine Learning Identify a CD79A+B Cells-Related Transcriptional Signature for Predicting Clinical Outcomes and Immune Microenvironment in Breast Cancer.

Cancer Inform. 2025-7-26

[8]
A Bioinformatics Analysis on the Subtypes of Hepatocellular Carcinoma Related to RNA Processing Genes to Reveal Prognosis and Immune Microenvironment Features.

Dig Dis Sci. 2025-7-28

[9]
Interpretable machine learning driven biomarker identification and validation for prostate cancer.

Transl Androl Urol. 2025-6-30

[10]
Identification of a fibroblast-derived gene signature reveals prognostic and therapeutic insights in pancreatic cancer.

Clin Exp Med. 2025-7-18

本文引用的文献

[1]
Identification of a six-gene prognostic signature for bladder cancer associated macrophage.

Front Immunol. 2022

[2]
ggtranscript: an R package for the visualization and interpretation of transcript isoforms using ggplot2.

Bioinformatics. 2022-8-2

[3]
APOBEC-mediated mutagenesis is a favorable predictor of prognosis and immunotherapy for bladder cancer patients: evidence from pan-cancer analysis and multiple databases.

Theranostics. 2022

[4]
Immunostimulatory Cancer-Associated Fibroblast Subpopulations Can Predict Immunotherapy Response in Head and Neck Cancer.

Clin Cancer Res. 2022-5-13

[5]
Identification and validation of a novel signature for prediction the prognosis and immunotherapy benefit in bladder cancer.

PeerJ. 2022

[6]
Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments.

Mol Ther. 2022-3-2

[7]
Integrative Transcriptome Profiling Reveals as a Novel Prognostic Marker in Non-Muscle Invasive Bladder Cancer.

Cancers (Basel). 2021-9-17

[8]
European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ).

Eur Urol. 2022-1

[9]
CircPTPRA blocks the recognition of RNA N-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression.

Mol Cancer. 2021-4-14

[10]
Therapeutic and prognostic implications of NOTCH and MAPK signaling in bladder cancer.

Cancer Sci. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索