College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China.
School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001, Australia.
Small. 2023 Jul;19(28):e2301627. doi: 10.1002/smll.202301627. Epub 2023 Mar 28.
The ambient electrochemical N reduction reaction (NRR) is a future approach for the artificial NH synthesis to overcome the problems of high-energy consumption and environmental pollution by Haber-Bosch technology. However, the challenge of N activation on a catalyst surface and the competitive hydrogen evolution reaction make the current NRR unsatisfied. Herein, this work demonstrates that NbB nanoflakes (NFs) exhibit excellent selectivity and durability in NRR, which produces NH with a production rate of 30.5 µg h mg and a super-high Faraday efficiency (FE) of 40.2%. The high-selective NH production is attributed to the large amount of active B vacancies on the surface of NbB NFs. Density functional theory calculations suggest that the multiple atomic adsorption of N on both unsaturated Nb and B atoms results in a significantly stretched N molecule. The weakened NN triple bonds are easier to be broken for a biased NH production. The diatomic catalysis is a future approach for NRR as it shows a special N adsorption mode that can be well engineered.
环境电化学氮还原反应 (NRR) 是一种未来的人工 NH3 合成方法,可克服 Haber-Bosch 技术中高能耗和环境污染的问题。然而,催化剂表面上的 N 激活以及竞争的析氢反应使得目前的 NRR 无法令人满意。在此,本工作表明,NbB 纳米片 (NFs) 在 NRR 中表现出优异的选择性和耐久性,其 NH3 生成速率为 30.5 µg h mg−1,超高的法拉第效率 (FE) 为 40.2%。高选择性的 NH3 生成归因于 NbB NFs 表面大量的活性 B 空位。密度泛函理论计算表明,N 在不饱和 Nb 和 B 原子上的多原子吸附导致 N 分子被显著拉伸。较弱的 NN 三键更容易被打破,从而有利于 NH3 的生成。双原子催化是 NRR 的未来方法,因为它表现出一种特殊的 N 吸附模式,可以很好地进行工程设计。