Suppr超能文献

用于连续手势学习的多视角认知记忆系统

Multi-Scopic Cognitive Memory System for Continuous Gesture Learning.

作者信息

Dou Wenbang, Chin Weihong, Kubota Naoyuki

机构信息

Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo 193-0831, Japan.

出版信息

Biomimetics (Basel). 2023 Feb 21;8(1):88. doi: 10.3390/biomimetics8010088.

Abstract

With the advancement of artificial intelligence technologies in recent years, research on intelligent robots has progressed. Robots are required to understand human intentions and communicate more smoothly with humans. Since gestures can have a variety of meanings, gesture recognition is one of the essential issues in communication between robots and humans. In addition, robots need to learn new gestures as humans grow. Moreover, individual gestures vary. Because catastrophic forgetting occurs in training new data in traditional gesture recognition approaches, it is necessary to preserve the prepared data and combine it with further data to train the model from scratch. We propose a Multi-scopic Cognitive Memory System (MCMS) that mimics the lifelong learning process of humans and can continuously learn new gestures without forgetting previously learned gestures. The proposed system comprises a two-layer structure consisting of an episode memory layer and a semantic memory layer, with a topological map as its backbone. The system is designed with reference to conventional continuous learning systems in three ways: (i) using a dynamic architecture without setting the network size, (ii) adding regularization terms to constrain learning, and (iii) generating data from the network itself and performing relearning. The episode memory layer clusters the data and learns their spatiotemporal representation. The semantic memory layer generates a topological map based on task-related inputs and stores them as longer-term episode representations in the robot's memory. In addition, to alleviate catastrophic forgetting, the memory replay function can reinforce memories autonomously. The proposed system could mitigate catastrophic forgetting and perform continuous learning by using both machine learning benchmark datasets and real-world data compared to conventional methods.

摘要

近年来,随着人工智能技术的进步,智能机器人的研究取得了进展。要求机器人理解人类意图并与人类更顺畅地交流。由于手势可以有多种含义,手势识别是机器人与人类交流中的关键问题之一。此外,随着人类的成长,机器人需要学习新的手势。而且,个体手势存在差异。由于传统手势识别方法在训练新数据时会出现灾难性遗忘,因此有必要保留已准备好的数据并将其与更多数据相结合,从头开始训练模型。我们提出了一种多视角认知记忆系统(MCMS),它模仿人类的终身学习过程,能够不断学习新手势而不会忘记之前学过的手势。所提出的系统包括一个由情节记忆层和语义记忆层组成的两层结构,以拓扑图作为其主干。该系统在三个方面参考了传统的持续学习系统进行设计:(i)使用动态架构而不设置网络大小,(ii)添加正则化项来约束学习,(iii)从网络本身生成数据并进行重新学习。情节记忆层对数据进行聚类并学习它们的时空表示。语义记忆层根据与任务相关的输入生成拓扑图,并将它们作为长期情节表示存储在机器人的内存中。此外,为了减轻灾难性遗忘,记忆重放功能可以自主强化记忆。与传统方法相比,所提出的系统通过使用机器学习基准数据集和真实世界数据,可以减轻灾难性遗忘并进行持续学习。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ea/10046067/af6a9a51e2d0/biomimetics-08-00088-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验