Suppr超能文献

用于三维控制细胞和组织功能的纳米制造技术。

Nanofabrication Technologies to Control Cell and Tissue Function in Three-Dimension.

作者信息

Otsuka Hidenori

机构信息

Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

出版信息

Gels. 2023 Mar 7;9(3):203. doi: 10.3390/gels9030203.

Abstract

In the 2000s, advances in cellular micropatterning using microfabrication contributed to the development of cell-based biosensors for the functional evaluation of newly synthesized drugs, resulting in a revolutionary evolution in drug screening. To this end, it is essential to utilize cell patterning to control the morphology of adherent cells and to understand contact and paracrine-mediated interactions between heterogeneous cells. This suggests that the regulation of the cellular environment by means of microfabricated synthetic surfaces is not only a valuable endeavor for basic research in biology and histology, but is also highly useful to engineer artificial cell scaffolds for tissue regeneration. This review particularly focuses on surface engineering techniques for the cellular micropatterning of three-dimensional (3D) spheroids. To establish cell microarrays, composed of a cell adhesive region surrounded by a cell non-adherent surface, it is quite important to control a protein-repellent surface in the micro-scale. Thus, this review is focused on the surface chemistries of the biologically inspired micropatterning of two-dimensional non-fouling characters. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single-cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., fibers and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. These important approaches to cell engineering result in their applications to tissue regeneration, where the cell-biomaterial composite is injected into diseased area. This approach allows the operating surgeon to implant the cell and polymer combinations with minimum invasiveness. The polymers utilized in hydrogels are structurally similar to components of the extracellular matrix in vivo, and are considered biocompatible. This review will provide an overview of the critical design to make hydrogels when used as cell scaffolds for tissue engineering. In addition, the new strategy of injectable hydrogel will be discussed as future directions.

摘要

在21世纪,利用微纳加工技术实现的细胞微图案化进展推动了用于新合成药物功能评估的基于细胞的生物传感器的发展,引发了药物筛选的革命性变革。为此,利用细胞图案化来控制贴壁细胞的形态并理解异质细胞之间的接触和旁分泌介导的相互作用至关重要。这表明通过微纳加工合成表面来调节细胞环境不仅是生物学和组织学基础研究的一项有价值的工作,而且对于构建用于组织再生的人工细胞支架也非常有用。本综述特别关注三维(3D)球体细胞微图案化的表面工程技术。为了建立由细胞非粘附表面包围的细胞粘附区域组成的细胞微阵列,在微尺度上控制蛋白质排斥表面非常重要。因此,本综述聚焦于具有二维非污染特性的生物启发式微图案化的表面化学。当细胞形成球体时,与单细胞移植相比,它们在移植部位的存活、功能和植入情况都有显著改善。为了进一步提高细胞球体的治疗效果,已经开发了各种生物材料(如纤维和水凝胶)用于球体工程。这些生物材料不仅可以控制整体球体的形成(如大小、形状、聚集速度和压实程度),还可以调节球体中细胞间和细胞与基质的相互作用。这些重要的细胞工程方法使其应用于组织再生,即将细胞 - 生物材料复合物注入患病区域。这种方法使外科医生能够以最小的侵入性植入细胞和聚合物组合。水凝胶中使用的聚合物在结构上与体内细胞外基质的成分相似,被认为具有生物相容性。本综述将概述水凝胶用作组织工程细胞支架时的关键设计。此外,还将讨论可注射水凝胶的新策略作为未来发展方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44d7/10048556/fb055b0241c6/gels-09-00203-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验