Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.
ACS Appl Mater Interfaces. 2023 Apr 12;15(14):17978-17985. doi: 10.1021/acsami.3c02084. Epub 2023 Mar 28.
Solid-state polymer electrolytes (SPEs) are considered as one of the most promising candidates for the next-generation lithium metal batteries (LMBs). However, the large thickness and severe interfacial side reactions with electrodes seriously restrict the application of SPEs. Herein, we developed an ultrathin and robust poly(vinylidene fluoride) (PVDF)-based composite polymer electrolyte (PPSE) by introducing polyethylene (PE) separators and SiO nanoparticles with rich silicon hydroxyl (Si-OH) groups (nano-SiO). The thickness of the PPSE is only 20 μm but possesses a quite high mechanical strength of 64 MPa. The introduction of nano-SiO fillers can tightly anchor the essential ,-dimethylformamide (DMF) to reinforce the ion-transport ability of PVDF and suppress the side reactions of DMF with Li metal, which can significantly enhance the electrochemical stability of the PPSE. Meanwhile, the Si-OH groups on the surface of nano-SiO as a Lewis acid promote the dissociation of the lithium bis(fluorosulfonyl)imide (LiFSI) and immobilize the FSI anions, achieving a high lithium transference number (0.59) and an ideal ionic conductivity (4.81 × 10 S cm) for the PPSE. The assembled Li/PPSE/Li battery can stably cycle for a record of 11,000 h, and the LiNiCoMnO/PPSE/Li battery presents an initial specific capacity of 173.3 mA h g at 0.5 C, which can stably cycle 300 times. This work provides a new strategy for designing composite solid-state electrolytes with high mechanical strength and ionic conductivity by modulating their framework.
固态聚合物电解质(SPE)被认为是下一代锂金属电池(LMB)最有前途的候选者之一。然而,较大的厚度和与电极的严重界面副反应严重限制了 SPE 的应用。在此,我们通过引入具有丰富硅羟基(Si-OH)基团的纳米 SiO 颗粒(纳米-SiO),开发了一种超薄且坚固的聚偏二氟乙烯(PVDF)基复合聚合物电解质(PPSE)。PPSE 的厚度仅为 20 μm,但具有相当高的机械强度 64 MPa。纳米-SiO 填料的引入可以紧密固定必要的二甲基甲酰胺(DMF),以增强 PVDF 的离子传输能力并抑制 DMF 与 Li 金属的副反应,从而显著提高 PPSE 的电化学稳定性。同时,纳米-SiO 表面的 Si-OH 基团作为路易斯酸促进了双(氟磺酰基)亚胺(LiFSI)的解离,并固定了 FSI 阴离子,实现了 PPSE 高锂离子迁移数(0.59)和理想的离子电导率(4.81×10 S cm)。组装的 Li/PPSE/Li 电池可以稳定循环 11000 h,LiNiCoMnO/PPSE/Li 电池在 0.5 C 时的初始比容量为 173.3 mA h g,可稳定循环 300 次。这项工作提供了一种通过调节其框架来设计具有高机械强度和离子电导率的复合固态电解质的新策略。