Department of Epidemiology, University of Washington, Seattle, Washington, USA.
Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA.
mSystems. 2023 Apr 27;8(2):e0100322. doi: 10.1128/msystems.01003-22. Epub 2023 Mar 28.
Several studies have compared metagenome inference performance in different human body sites; however, none specifically reported on the vaginal microbiome. Findings from other body sites cannot easily be generalized to the vaginal microbiome due to unique features of vaginal microbial ecology, and investigators seeking to use metagenome inference in vaginal microbiome research are "flying blind" with respect to potential bias these methods may introduce into analyses. We compared the performance of PICRUSt2 and Tax4Fun2 using paired 16S rRNA gene amplicon sequencing and whole-metagenome sequencing data from vaginal samples from 72 pregnant individuals enrolled in the Pregnancy, Infection, and Nutrition (PIN) cohort. Participants were selected from those with known birth outcomes and adequate 16S rRNA gene amplicon sequencing data in a case-control design. Cases experienced early preterm birth (<32 weeks of gestation), and controls experienced term birth (37 to 41 weeks of gestation). PICRUSt2 and Tax4Fun2 performed modestly overall (median Spearman correlation coefficients between observed and predicted KEGG ortholog [KO] relative abundances of 0.20 and 0.22, respectively). Both methods performed best among Lactobacillus crispatus-dominated vaginal microbiotas (median Spearman correlation coefficients of 0.24 and 0.25, respectively) and worst among Lactobacillus iners-dominated microbiotas (median Spearman correlation coefficients of 0.06 and 0.11, respectively). The same pattern was observed when evaluating correlations between univariable hypothesis test values generated with observed and predicted metagenome data. Differential metagenome inference performance across vaginal microbiota community types can be considered differential measurement error, which often causes differential misclassification. As such, metagenome inference will introduce hard-to-predict bias (toward or away from the null) in vaginal microbiome research. Compared to taxonomic composition, the functional potential within a bacterial community is more relevant to establishing mechanistic understandings and causal relationships between the microbiome and health outcomes. Metagenome inference attempts to bridge the gap between 16S rRNA gene amplicon sequencing and whole-metagenome sequencing by predicting a microbiome's gene content based on its taxonomic composition and annotated genome sequences of its members. Metagenome inference methods have been evaluated primarily among gut samples, where they appear to perform fairly well. Here, we show that metagenome inference performance is markedly worse for the vaginal microbiome and that performance varies across common vaginal microbiome community types. Because these community types are associated with sexual and reproductive outcomes, differential metagenome inference performance will bias vaginal microbiome studies, obscuring relationships of interest. Results from such studies should be interpreted with substantial caution and the understanding that they may over- or underestimate associations with metagenome content.
已有多项研究比较了不同人体部位宏基因组推断性能;然而,尚无研究专门针对阴道微生物组。由于阴道微生物生态具有独特性,其他部位的研究结果不能轻易推广到阴道微生物组,因此,研究人员在使用宏基因组推断进行阴道微生物组研究时,对于这些方法可能会给分析带来的潜在偏差,实际上是“盲目”的。我们比较了 PICRUSt2 和 Tax4Fun2 使用配对 16S rRNA 基因扩增子测序和 72 名参加妊娠、感染和营养 (PIN) 队列的孕妇阴道样本全宏基因组测序数据的性能。参与者是根据已知的分娩结果和病例对照设计中充足的 16S rRNA 基因扩增子测序数据选择的。病例组经历了早产(<32 孕周),对照组经历了足月产(37 至 41 孕周)。PICRUSt2 和 Tax4Fun2 的总体表现一般(观察到的和预测的 KO 相对丰度之间的 Spearman 相关系数分别为 0.20 和 0.22)。两种方法在乳杆菌crispatus 主导的阴道微生物群中表现最好(Spearman 相关系数中位数分别为 0.24 和 0.25),在乳杆菌iners 主导的微生物群中表现最差(Spearman 相关系数中位数分别为 0.06 和 0.11)。当评估基于观察到的和预测的宏基因组数据生成的单变量假设检验值之间的相关性时,也观察到了相同的模式。不同阴道微生物群群落类型之间的宏基因组推断性能差异可被视为差异测量误差,通常会导致差异错误分类。因此,宏基因组推断会在阴道微生物组研究中引入难以预测的偏差(偏向或远离零假设)。与分类组成相比,细菌群落的功能潜力与建立微生物组与健康结果之间的机制理解和因果关系更相关。宏基因组推断试图通过基于分类组成和成员注释基因组序列来预测微生物组的基因含量,从而弥合 16S rRNA 基因扩增子测序和全宏基因组测序之间的差距。宏基因组推断方法主要在肠道样本中进行了评估,在这些样本中,它们的表现似乎相当不错。在这里,我们表明,宏基因组推断在阴道微生物组中的性能明显较差,并且性能因常见的阴道微生物群群落类型而异。由于这些群落类型与性和生殖结果有关,宏基因组推断性能的差异会使阴道微生物组研究产生偏差,掩盖了感兴趣的关系。应谨慎解读此类研究的结果,并认识到它们可能会高估或低估与宏基因组内容的关联。