Hoover Andrew J, Spale Martin, Lahue Brian, Bitton Danny A
Computational and Structural Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States.
R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague 150 00, Czech Republic.
J Chem Inf Model. 2023 Apr 10;63(7):1852-1857. doi: 10.1021/acs.jcim.3c00015. Epub 2023 Mar 28.
To solve recurring problems in drug discovery, matched molecular pair (MMP) analysis is used to understand relationships between chemical structure and function. For the MMP analysis of large data sets (>10,000 compounds), available tools lack flexible search and visualization functionality and require computational expertise. Here, we present Matcher, an open-source application for MMP analysis, with novel search algorithms and fully automated querying-to-visualization that requires no programming expertise. Matcher enables unprecedented control over the search and clustering of MMP transformations based on both variable fragment and constant environment structure, which is critical for disentangling relevant and irrelevant data to a given problem. Users can exert such control through a built-in chemical sketcher and with a few mouse clicks can navigate between resulting MMP transformations, statistics, property distribution graphs, and structures with raw experimental data, for confident and accelerated decision making. Matcher can be used with any collection of structure/property data; here, we demonstrate usage with a public ChEMBL data set of about 20,000 small molecules with CYP3A4 and/or hERG inhibition data. Users can reproduce all examples demonstrated herein via unique links within Matcher's interface-a functionality that anyone can use to preserve and share their own analyses. Matcher and all its dependencies are open-source, can be used for free, and are available with containerized deployment from code at https://github.com/Merck/Matcher. Matcher makes large structure/property data sets more transparent than ever before and accelerates the data-driven solution of common problems in drug discovery.
为了解决药物研发中反复出现的问题,匹配分子对(MMP)分析被用于理解化学结构与功能之间的关系。对于大数据集(>10,000种化合物)的MMP分析,现有工具缺乏灵活的搜索和可视化功能,并且需要计算专业知识。在此,我们展示了Matcher,一种用于MMP分析的开源应用程序,它具有新颖的搜索算法以及无需编程专业知识的全自动查询到可视化功能。Matcher能够基于可变片段和恒定环境结构,以前所未有的方式控制MMP转化的搜索和聚类,这对于区分给定问题的相关和无关数据至关重要。用户可以通过内置的化学绘图工具进行这种控制,只需点击几下鼠标,就能在生成的MMP转化、统计数据、性质分布图以及带有原始实验数据的结构之间导航,从而做出自信且快速的决策。Matcher可与任何结构/性质数据集合一起使用;在此,我们展示了其与一个包含约20,000个小分子的公共ChEMBL数据集以及CYP3A4和/或hERG抑制数据的使用情况。用户可以通过Matcher界面内的唯一链接重现本文展示的所有示例——任何人都可以使用此功能来保存和分享自己的分析。Matcher及其所有依赖项都是开源的,可以免费使用,并且可以通过https://github.com/Merck/Matcher上的代码进行容器化部署。Matcher使大型结构/性质数据集比以往任何时候都更加透明,并加速了药物研发中常见问题的数据驱动解决方案。