Yang Hui, He Peng, Ou Kai, Hu Yueqiang, Jiang Yuting, Ou Xiangnian, Jia Honghui, Xie Zhenwei, Yuan Xiaocong, Duan Huigao
National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China.
Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060,, Guangdong, China.
Light Sci Appl. 2023 Mar 28;12(1):79. doi: 10.1038/s41377-023-01125-2.
Metasurfaces can perform high-performance multi-functional integration by manipulating the abundant physical dimensions of light, demonstrating great potential in high-capacity information technologies. The orbital angular momentum (OAM) and spin angular momentum (SAM) dimensions have been respectively explored as the independent carrier for information multiplexing. However, fully managing these two intrinsic properties in information multiplexing remains elusive. Here, we propose the concept of angular momentum (AM) holography which can fully synergize these two fundamental dimensions to act as the information carrier, via a single-layer, non-interleaved metasurface. The underlying mechanism relies on independently controlling the two spin eigenstates and arbitrary overlaying them in each operation channel, thereby spatially modulating the resulting waveform at will. As a proof of concept, we demonstrate an AM meta-hologram allowing the reconstruction of two sets of holographic images, i.e., the spin-orbital locked and the spin-superimposed ones. Remarkably, leveraging the designed dual-functional AM meta-hologram, we demonstrate a novel optical nested encryption scheme, which is able to achieve parallel information transmission with ultra-high capacity and security. Our work opens a new avenue for optionally manipulating the AM, holding promising applications in the fields of optical communication, information security and quantum science.
超表面可以通过操纵光的丰富物理维度来实现高性能的多功能集成,在高容量信息技术中展现出巨大潜力。轨道角动量(OAM)和自旋角动量(SAM)维度已分别被探索作为信息复用的独立载体。然而,在信息复用中全面管理这两个固有属性仍然难以实现。在此,我们提出了角动量(AM)全息术的概念,它可以通过单层、非交错超表面将这两个基本维度充分协同起来作为信息载体。其潜在机制依赖于在每个操作通道中独立控制两个自旋本征态并将它们任意叠加,从而随意地在空间上调制合成波形。作为概念验证,我们展示了一个AM超全息图,它能够重建两组全息图像,即自旋 - 轨道锁定图像和自旋叠加图像。值得注意的是,利用所设计的双功能AM超全息图,我们展示了一种新颖的光学嵌套加密方案,该方案能够实现具有超高容量和安全性的并行信息传输。我们的工作为选择性地操纵角动量开辟了一条新途径,在光通信、信息安全和量子科学领域具有广阔的应用前景。