Suppr超能文献

社区数据驱动方法鉴定泛种族携带者筛查面板的致病性种系变异。

Community data-driven approach to identify pathogenic founder variants for pan-ethnic carrier screening panels.

机构信息

Genoox, Tel Aviv, Israel.

The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv, Israel.

出版信息

Hum Genomics. 2023 Mar 28;17(1):30. doi: 10.1186/s40246-023-00472-w.

Abstract

BACKGROUND

The American College of Medical Genetics and Genomics (ACMG) recently published new tier-based carrier screening recommendations. While many pan-ethnic genetic disorders are well established, some genes carry pathogenic founder variants (PFVs) that are unique to specific ethnic groups. We aimed to demonstrate a community data-driven approach to creating a pan-ethnic carrier screening panel that meets the ACMG recommendations.

METHODS

Exome sequencing data from 3061 Israeli individuals were analyzed. Machine learning determined ancestries. Frequencies of candidate pathogenic/likely pathogenic (P/LP) variants based on ClinVar and Franklin were calculated for each subpopulation based on the Franklin community platform and compared with existing screening panels. Candidate PFVs were manually curated through community members and the literature.

RESULTS

The samples were automatically assigned to 13 ancestries. The largest number of samples was classified as Ashkenazi Jewish (n = 1011), followed by Muslim Arabs (n = 613). We detected one tier-2 and seven tier-3 variants that were not included in existing carrier screening panels for Ashkenazi Jewish or Muslim Arab ancestries. Five of these P/LP variants were supported by evidence from the Franklin community. Twenty additional variants were detected that are potentially pathogenic tier-2 or tier-3.

CONCLUSIONS

The community data-driven and sharing approaches facilitate generating inclusive and equitable ethnically based carrier screening panels. This approach identified new PFVs missing from currently available panels and highlighted variants that may require reclassification.

摘要

背景

美国医学遗传学与基因组学学会(ACMG)最近发布了新的基于层级的携带者筛查推荐。虽然许多泛种族遗传疾病已经得到很好的证实,但有些基因携带有特定族群特有的致病性种系变异(PFV)。我们旨在展示一种基于社区数据的方法,创建符合 ACMG 建议的泛种族携带者筛查面板。

方法

分析了 3061 名以色列个体的外显子组测序数据。机器学习确定了祖源。根据 Franklin 社区平台,基于 ClinVar 和 Franklin,为每个亚群计算了候选致病性/可能致病性(P/LP)变异的频率,并与现有的筛查面板进行了比较。候选 PFV 通过社区成员和文献进行了手动整理。

结果

样本被自动分配到 13 个祖源。最大数量的样本被归类为阿什肯纳兹犹太人(n=1011),其次是穆斯林阿拉伯人(n=613)。我们在现有的阿什肯纳兹犹太或穆斯林阿拉伯祖源携带者筛查面板中未检测到一个 2 级和七个 3 级变异。其中 5 个 P/LP 变异得到了 Franklin 社区的证据支持。还检测到了另外 20 个可能是 2 级或 3 级致病性的变异。

结论

社区数据驱动和共享方法有助于生成包容和公平的基于种族的携带者筛查面板。这种方法发现了当前可用面板中缺失的新 PFV,并强调了可能需要重新分类的变异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef9d/10044388/0ef03f5e8550/40246_2023_472_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验