Suppr超能文献

C5.0算法在参与新冠疫情救治的医护人员感知压力评估中的应用

Application of C5.0 Algorithm for the Assessment of Perceived Stress in Healthcare Professionals Attending COVID-19.

作者信息

Delgado-Gallegos Juan Luis, Avilés-Rodriguez Gener, Padilla-Rivas Gerardo R, De Los Ángeles Cosío-León María, Franco-Villareal Héctor, Nieto-Hipólito Juan Iván, de Dios Sánchez López Juan, Zuñiga-Violante Erika, Islas Jose Francisco, Romo-Cardenas Gerardo Salvador

机构信息

Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64260, Mexico.

Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada 22890, Mexico.

出版信息

Brain Sci. 2023 Mar 20;13(3):513. doi: 10.3390/brainsci13030513.

Abstract

Coronavirus disease (COVID-19) represents one of the greatest challenges to public health in modern history. As the disease continues to spread globally, medical and allied healthcare professionals have become one of the most affected sectors. Stress and anxiety are indirect effects of the COVID-19 pandemic. Therefore, it is paramount to understand and categorize their perceived levels of stress, as it can be a detonating factor leading to mental illness. Here, we propose a computer-based method to better understand stress in healthcare workers facing COVID-19 at the beginning of the pandemic. We based our study on a representative sample of healthcare professionals attending to COVID-19 patients in the northeast region of Mexico, at the beginning of the pandemic. We used a machine learning classification algorithm to obtain a visualization model to analyze perceived stress. The C5.0 decision tree algorithm was used to study datasets. We carried out an initial preprocessing statistical analysis for a group of 101 participants. We performed chi-square tests for all questions, individually, in order to validate stress level calculation ( < 0.05) and a calculated Cronbach's alpha of 0.94 and McDonald's omega of 0.95, demonstrating good internal consistency in the dataset. The obtained model failed to classify only 6 out of the 101, missing two cases for mild, three for moderate and one for severe (accuracy of 94.1%). We performed statistical correlation analysis to ensure integrity of the method. In addition, based on the decision tree model, we concluded that severe stress cases can be related mostly to high levels of xenophobia and compulsive stress. Thus, showing that applied machine learning algorithms represent valuable tools in the assessment of perceived stress, which can potentially be adapted to other areas of the medical field.

摘要

冠状病毒病(COVID-19)是现代历史上对公共卫生的最大挑战之一。随着该疾病在全球持续蔓延,医学及相关医疗保健专业人员已成为受影响最严重的行业之一。压力和焦虑是COVID-19大流行的间接影响。因此,了解并对他们感知到的压力水平进行分类至关重要,因为这可能是导致精神疾病的引爆因素。在此,我们提出一种基于计算机的方法,以更好地了解在大流行初期面对COVID-19的医护人员的压力。我们的研究基于大流行初期在墨西哥东北部照顾COVID-19患者的医护人员的代表性样本。我们使用机器学习分类算法来获得一个可视化模型,以分析感知到的压力。C5.0决策树算法用于研究数据集。我们对一组101名参与者进行了初步的预处理统计分析。我们对所有问题分别进行卡方检验,以验证压力水平计算(<0.05),计算出的Cronbach's alpha为0.94,McDonald's omega为0.95,表明数据集中具有良好的内部一致性。所获得的模型在101个样本中仅误分类了6个,轻度漏判2例,中度漏判3例,重度漏判1例(准确率为94.1%)。我们进行了统计相关性分析以确保该方法的完整性。此外,基于决策树模型,我们得出结论,严重压力情况主要与高度的仇外心理和强迫性压力有关。因此,表明应用的机器学习算法是评估感知压力的有价值工具,有可能适用于医学领域的其他领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e8b/10046351/f211c77e182a/brainsci-13-00513-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验