Suppr超能文献

基于铜死亡机制,运用机器学习方法构建乳腺癌的ceRNA网络和风险模型。

Construct ceRNA Network and Risk Model of Breast Cancer Using Machine Learning Methods under the Mechanism of Cuproptosis.

作者信息

Deng Jianzhi, Fu Fei, Zhang Fengming, Xia Yuanyuan, Zhou Yuehan

机构信息

Guangxi Key Laboratory of Embedded Technology and Intelligent Information Processing, Guilin University of Technology, Guilin 541006, China.

College of Information Science and Engineering, Guilin University of Technology, Guilin 541006, China.

出版信息

Diagnostics (Basel). 2023 Mar 22;13(6):1203. doi: 10.3390/diagnostics13061203.

Abstract

Breast cancer (BRCA) has an undesirable prognosis and is the second most common cancer among women after lung cancer. A novel mechanism of programmed cell death called cuproptosis is linked to the development and spread of tumor cells. However, the function of cuproptosis in BRCA remains unknown. To this date, no studies have used machine learning methods to screen for characteristic genes to explore the role of cuproptosis-related genes (CRGs) in breast cancer. Therefore, 14 cuproptosis-related characteristic genes (CRCGs) were discovered by the feature selection of 39 differentially expressed CRGs using the three machine learning methods LASSO, SVM-RFE, and random forest. Through the PPI network and immune infiltration analysis, we found that PRNP was the key CRCG. The miRTarBase, TargetScan, and miRDB databases were then used to identify hsa-miR-192-5p and hsa-miR-215-5p as the upstream miRNA of PRNP, and the upstream lncRNA, CARMN, was identified by the StarBase database. Thus, the mRNA PRNP/miRNA hsa-miR-192-5p and hsa-miR-215-5p/lncRNA CARMN ceRNA network was constructed. This ceRNA network, which has not been studied before, is extremely innovative. Furthermore, four cuproptosis-related lncRNAs (CRLs) were screened in TCGA-BRCA by univariate Cox, LASSO, and multivariate Cox regression analysis. The risk model was constructed by using these four CRLs, and the risk score = C9orf163 * (1.8365) + PHC2-AS1 * (-2.2985) + AC087741.1 * (-0.9504) + AL109824.1 * (0.6016). The ROC curve and C-index demonstrated the superior predictive capacity of the risk model, and the ROC curve demonstrated that the AUC of 1-, 3-, and 5-year OS in all samples was 0.721, 0.695, and 0.633, respectively. Finally, 50 prospective sensitive medicines were screened with the pRRophetic R package, among which 17-AAG may be a therapeutic agent for high-risk patients, while the other 49 medicines may be suitable for the treatment of low-risk patients. In conclusion, our study constructs a new ceRNA network and a novel risk model, which offer a theoretical foundation for the treatment of BRCA and will aid in improving the prognosis of BRCA.

摘要

乳腺癌(BRCA)预后不良,是女性中仅次于肺癌的第二大常见癌症。一种名为铜死亡的新型程序性细胞死亡机制与肿瘤细胞的发展和扩散有关。然而,铜死亡在乳腺癌中的功能尚不清楚。迄今为止,尚无研究使用机器学习方法筛选特征基因以探索铜死亡相关基因(CRG)在乳腺癌中的作用。因此,使用套索回归(LASSO)、支持向量机递归特征消除(SVM-RFE)和随机森林这三种机器学习方法,通过对39个差异表达的CRG进行特征选择,发现了14个铜死亡相关特征基因(CRCG)。通过蛋白质-蛋白质相互作用(PPI)网络和免疫浸润分析,我们发现朊蛋白(PRNP)是关键的CRCG。然后使用miRTarBase、TargetScan和miRDB数据库确定hsa-miR-192-5p和hsa-miR-215-5p为PRNP的上游微小RNA(miRNA),并通过StarBase数据库鉴定出上游长链非编码RNA(lncRNA)CARMN。由此构建了mRNA PRNP/miRNA hsa-miR-192-5p和hsa-miR-215-5p/lncRNA CARMN竞争性内源RNA(ceRNA)网络。这个此前未被研究过的ceRNA网络极具创新性。此外,通过单变量Cox回归、LASSO回归和多变量Cox回归分析,在TCGA-BRCA中筛选出4个铜死亡相关lncRNA(CRL)。利用这4个CRL构建风险模型,风险评分 = C9orf163 *(1.8365)+ PHC2-AS1 *(-2.2985)+ AC087741.1 *(-0.9504)+ AL109824.1 *(0.6016)。受试者工作特征(ROC)曲线和C指数表明该风险模型具有卓越的预测能力,ROC曲线显示所有样本中1年、3年和5年总生存期(OS)的曲线下面积(AUC)分别为0.721、0.695和0.633。最后,使用pRRophetic R包筛选出50种潜在敏感药物,其中17-烯丙基氨基-17-去甲氧基格尔德霉素(17-AAG)可能是高危患者的治疗药物,而其他49种药物可能适用于低危患者的治疗。总之,我们的研究构建了一个新的ceRNA网络和一个新型风险模型,为乳腺癌的治疗提供了理论基础,并将有助于改善乳腺癌的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41ad/10047351/3118f97273df/diagnostics-13-01203-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验