Zaqueros-Martinez Jessica, Rodriguez-Gomez Gustavo, Tlelo-Cuautle Esteban, Orihuela-Espina Felipe
Department of Computer Science, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Tonantzintla, Puebla 72840, Mexico.
Department of Electronics, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Tonantzintla, Puebla 72840, Mexico.
Entropy (Basel). 2023 Mar 13;25(3):495. doi: 10.3390/e25030495.
Chaotic systems are hard to synchronize, and no general solution exists. The presence of hidden attractors makes finding a solution particularly elusive. Successful synchronization critically depends on the control strategy, which must be carefully chosen considering system features such as the presence of hidden attractors. We studied the feasibility of fuzzy control for synchronizing chaotic systems with hidden attractors and employed a special numerical integration method that takes advantage of the oscillatory characteristic of chaotic systems. We hypothesized that fuzzy synchronization and the chosen numerical integration method can successfully deal with this case of synchronization. We tested two synchronization schemes: complete synchronization, which leverages linearization, and projective synchronization, capitalizing on parallel distributed compensation (PDC). We applied the proposal to a set of known chaotic systems of integer order with hidden attractors. Our results indicated that fuzzy control strategies combined with the special numerical integration method are effective tools to synchronize chaotic systems with hidden attractors. In addition, for projective synchronization, we propose a new strategy to optimize error convergence. Furthermore, we tested and compared different Takagi-Sugeno (T-S) fuzzy models obtained by tensor product (TP) model transformation. We found an effect of the fuzzy model of the chaotic system on the synchronization performance.
混沌系统难以同步,且不存在通用的解决方案。隐藏吸引子的存在使得找到解决方案尤为困难。成功的同步关键取决于控制策略,必须根据系统特征(如隐藏吸引子的存在)仔细选择控制策略。我们研究了模糊控制用于同步具有隐藏吸引子的混沌系统的可行性,并采用了一种利用混沌系统振荡特性的特殊数值积分方法。我们假设模糊同步和所选择的数值积分方法能够成功处理这种同步情况。我们测试了两种同步方案:利用线性化的完全同步,以及基于并行分布补偿(PDC)的投影同步。我们将该方案应用于一组已知的具有隐藏吸引子的整数阶混沌系统。我们的结果表明,模糊控制策略与特殊数值积分方法相结合是同步具有隐藏吸引子的混沌系统的有效工具。此外,对于投影同步,我们提出了一种优化误差收敛的新策略。此外,我们测试并比较了通过张量积(TP)模型变换得到的不同的Takagi-Sugeno(T-S)模糊模型。我们发现混沌系统的模糊模型对同步性能有影响。