Mocanu Aura-Cătălina, Miculescu Florin, Constantinescu Andreea Elena, Pandele Mădălina-Andreea, Voicu Ștefan Ioan, Cîmpean Anișoara, Miculescu Marian, Negrescu Andreea Mariana
Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania.
Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania.
Materials (Basel). 2023 Mar 15;16(6):2359. doi: 10.3390/ma16062359.
Additive manufacturing or 3D printing technologies might advance the fabrication sector of personalised biomaterials with high-tech precision. The selection of optimal precursor materials is considered the first key-step for the development of new printable filaments destined for the fabrication of products with diverse orthopaedic/dental applications. The selection route of precursor materials proposed in this study targeted two categories of materials: prime materials, for the polymeric matrix (acrylonitrile butadiene styrene (ABS), polylactic acid (PLA)); and reinforcement materials (natural hydroxyapatite (HA) and graphene nanoplatelets (GNP) of different dimensions). HA was isolated from bovine bones (HA particles size < 40 μm, <100 μm, and >125 μm) through a reproducible synthesis technology. The structural (FTIR-ATR, Raman spectroscopy), morphological (SEM), and, most importantly, in vitro (indirect and direct contact studies) features of all precursor materials were comparatively evaluated. The polymeric materials were also prepared in the form of thin plates, for an advanced cell viability assessment (direct contact studies). The overall results confirmed once again the reproducibility of the HA synthesis method. Moreover, the biological cytotoxicity assays established the safe selection of PLA as a future polymeric matrix, with GNP of grade M as a reinforcement and HA as a bioceramic. Therefore, the obtained results pinpointed these materials as optimal for future composite filament synthesis and the 3D printing of implantable structures.
增材制造或3D打印技术可能会推动个性化生物材料制造领域向高科技精度发展。选择最佳前驱体材料被认为是开发用于制造具有多种骨科/牙科应用产品的新型可打印长丝的首要关键步骤。本研究提出的前驱体材料选择路线针对两类材料:用于聚合物基体的主要材料(丙烯腈丁二烯苯乙烯(ABS)、聚乳酸(PLA));以及增强材料(不同尺寸的天然羟基磷灰石(HA)和石墨烯纳米片(GNP))。通过可重复的合成技术从牛骨中分离出HA(HA颗粒尺寸<40μm、<100μm和>125μm)。对所有前驱体材料的结构(傅里叶变换红外光谱 - 衰减全反射法、拉曼光谱)、形态(扫描电子显微镜)以及最重要的体外(间接和直接接触研究)特征进行了比较评估。聚合物材料还制成薄板形式,用于先进的细胞活力评估(直接接触研究)。总体结果再次证实了HA合成方法的可重复性。此外,生物细胞毒性试验确定了将PLA作为未来聚合物基体、M级GNP作为增强材料以及HA作为生物陶瓷的安全选择。因此,所得结果表明这些材料是未来复合长丝合成和可植入结构3D打印的最佳材料。