Department of Physics, Madanapalle Institute of Technology and Science, Madanapalle 517 325, India.
Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
Molecules. 2023 Mar 8;28(6):2489. doi: 10.3390/molecules28062489.
An innovative form of 2D/0D g-CN/CeO nanostructure was synthesized using a simple precursor decomposition process. The 2D g-CN directs the growth of 0D CeO quantum dots, while also promoting good dispersion of CeOQDs. This 2D/0D nanostructure shows a capacitance of 202.5 F/g and notable rate capability and stability, outperforming the g-CN electrode, reflecting the state-of-the-art g-CN binary electrodes. The binary combination of materials also enables an asymmetric device (g-CN/CeOQDs//AC) to deliver the highest energy density (9.25 Wh/kg) and power density (900 W/kg). The superior rate capacity and stability endorsed the quantum structural merits of CeOQDs and layered g-CN, which offer more accessible sites for ion transport. These results suggest that the g-CN/CeOQDs nanostructure is a promising electrode material for energy storage devices.
采用简单的前驱体分解工艺合成了一种新颖的二维/零维 g-CN/CeO 纳米结构。二维 g-CN 引导 0D CeO 量子点的生长,同时也促进了 CeOQDs 的良好分散。这种二维/零维纳米结构表现出 202.5 F/g 的电容和优异的倍率性能和稳定性,优于 g-CN 电极,反映了 g-CN 二元电极的最新水平。材料的二元组合还使非对称器件 (g-CN/CeOQDs//AC) 能够提供最高的能量密度 (9.25 Wh/kg) 和功率密度 (900 W/kg)。卓越的倍率性能和稳定性证实了 CeOQDs 和层状 g-CN 的量子结构优势,它们为离子传输提供了更多可及的位点。这些结果表明,g-CN/CeOQDs 纳米结构是储能器件有前途的电极材料。