Suppr超能文献

用于观察性医疗保健数据库中基于风险的治疗效果异质性评估的标准化框架。

A standardized framework for risk-based assessment of treatment effect heterogeneity in observational healthcare databases.

作者信息

Rekkas Alexandros, van Klaveren David, Ryan Patrick B, Steyerberg Ewout W, Kent David M, Rijnbeek Peter R

机构信息

Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands.

Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands.

出版信息

NPJ Digit Med. 2023 Mar 30;6(1):58. doi: 10.1038/s41746-023-00794-y.

Abstract

Treatment effects are often anticipated to vary across groups of patients with different baseline risk. The Predictive Approaches to Treatment Effect Heterogeneity (PATH) statement focused on baseline risk as a robust predictor of treatment effect and provided guidance on risk-based assessment of treatment effect heterogeneity in a randomized controlled trial. The aim of this study is to extend this approach to the observational setting using a standardized scalable framework. The proposed framework consists of five steps: (1) definition of the research aim, i.e., the population, the treatment, the comparator and the outcome(s) of interest; (2) identification of relevant databases; (3) development of a prediction model for the outcome(s) of interest; (4) estimation of relative and absolute treatment effect within strata of predicted risk, after adjusting for observed confounding; (5) presentation of the results. We demonstrate our framework by evaluating heterogeneity of the effect of thiazide or thiazide-like diuretics versus angiotensin-converting enzyme inhibitors on three efficacy and nine safety outcomes across three observational databases. We provide a publicly available R software package for applying this framework to any database mapped to the Observational Medical Outcomes Partnership Common Data Model. In our demonstration, patients at low risk of acute myocardial infarction receive negligible absolute benefits for all three efficacy outcomes, though they are more pronounced in the highest risk group, especially for acute myocardial infarction. Our framework allows for the evaluation of differential treatment effects across risk strata, which offers the opportunity to consider the benefit-harm trade-off between alternative treatments.

摘要

通常预计治疗效果在具有不同基线风险的患者群体中会有所不同。治疗效果异质性的预测方法(PATH)声明将重点放在基线风险上,将其作为治疗效果的有力预测指标,并为随机对照试验中基于风险的治疗效果异质性评估提供指导。本研究的目的是使用标准化的可扩展框架将这种方法扩展到观察性研究环境中。所提出的框架包括五个步骤:(1)定义研究目标,即感兴趣的人群、治疗方法、对照和结局;(2)识别相关数据库;(3)开发针对感兴趣结局的预测模型;(4)在调整观察到的混杂因素后,估计预测风险分层内的相对和绝对治疗效果;(5)呈现结果。我们通过评估噻嗪类或噻嗪样利尿剂与血管紧张素转换酶抑制剂对三个观察性数据库中的三种疗效和九种安全性结局的效果异质性来展示我们的框架。我们提供了一个公开可用的R软件包,用于将此框架应用于映射到观察性医疗结局合作组织通用数据模型的任何数据库。在我们的演示中,急性心肌梗死低风险患者在所有三种疗效结局上获得的绝对益处微乎其微,尽管在最高风险组中益处更为明显,尤其是对于急性心肌梗死。我们的框架允许评估不同风险分层之间的差异治疗效果,这为考虑替代治疗之间的利弊权衡提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5675/10060247/bd235039276d/41746_2023_794_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验