Suppr超能文献

相似文献

1
Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data.
Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2571-2577. doi: 10.1073/pnas.1708282114.
2
Assessing the effectiveness of empirical calibration under different bias scenarios.
BMC Med Res Methodol. 2022 Jul 27;22(1):208. doi: 10.1186/s12874-022-01687-6.
4
Interpreting observational studies: why empirical calibration is needed to correct p-values.
Stat Med. 2014 Jan 30;33(2):209-18. doi: 10.1002/sim.5925. Epub 2013 Jul 30.
5
Bias, Confounding, and Interaction: Lions and Tigers, and Bears, Oh My!
Anesth Analg. 2017 Sep;125(3):1042-1048. doi: 10.1213/ANE.0000000000002332.
6
Limitations of empirical calibration of p-values using observational data.
Stat Med. 2016 Sep 30;35(22):3869-82. doi: 10.1002/sim.6936. Epub 2016 Mar 10.
7
8
10
A comparison of the empirical performance of methods for a risk identification system.
Drug Saf. 2013 Oct;36 Suppl 1:S143-58. doi: 10.1007/s40264-013-0108-9.

引用本文的文献

1
Bayesian Posterior Interval Calibration to Improve the Interpretability of Observational Studies.
Stat Anal Data Min. 2024 Dec;17(6). doi: 10.1002/sam.11715. Epub 2024 Dec 4.
4
Drug combination-wide association studies of cancer.
Commun Med (Lond). 2025 Jul 9;5(1):285. doi: 10.1038/s43856-025-00991-8.
5
Risk of Thyroid Tumors With GLP-1 Receptor Agonists: A Retrospective Cohort Study.
Diabetes Care. 2025 Aug 1;48(8):1386-1394. doi: 10.2337/dc25-0154.
6
Unraveling the Link Between Obesity and Keratoconus Risk Based on Genetic Evidence.
Transl Vis Sci Technol. 2025 May 1;14(5):20. doi: 10.1167/tvst.14.5.20.
9
Epidemiology of Shigella species and serotypes in children: a retrospective substudy of the MAL-ED observational birth cohort study.
Lancet Microbe. 2025 Jun;6(6):101064. doi: 10.1016/j.lanmic.2024.101064. Epub 2025 Mar 26.
10
Semaglutide and Nonarteritic Anterior Ischemic Optic Neuropathy.
JAMA Ophthalmol. 2025 Apr 1;143(4):304-314. doi: 10.1001/jamaophthalmol.2024.6555.

本文引用的文献

2
Negative Control Outcomes: A Tool to Detect Bias in Randomized Trials.
JAMA. 2016 Dec 27;316(24):2597-2598. doi: 10.1001/jama.2016.17700.
3
Accuracy of an automated knowledge base for identifying drug adverse reactions.
J Biomed Inform. 2017 Feb;66:72-81. doi: 10.1016/j.jbi.2016.12.005. Epub 2016 Dec 16.
5
Robust empirical calibration of p-values using observational data.
Stat Med. 2016 Sep 30;35(22):3883-8. doi: 10.1002/sim.6977.
6
Brief Report: Negative Controls to Detect Selection Bias and Measurement Bias in Epidemiologic Studies.
Epidemiology. 2016 Sep;27(5):637-41. doi: 10.1097/EDE.0000000000000504.
7
Data Resource Profile: Clinical Practice Research Datalink (CPRD).
Int J Epidemiol. 2015 Jun;44(3):827-36. doi: 10.1093/ije/dyv098. Epub 2015 Jun 6.
8
Control Outcomes and Exposures for Improving Internal Validity of Nonrandomized Studies.
Health Serv Res. 2015 Oct;50(5):1432-51. doi: 10.1111/1475-6773.12279. Epub 2015 Jan 19.
9
Massive parallelization of serial inference algorithms for a complex generalized linear model.
ACM Trans Model Comput Simul. 2013 Jan;23(1). doi: 10.1145/2414416.2414791.
10
Zoo or savannah? Choice of training ground for evidence-based pharmacovigilance.
Drug Saf. 2014 Sep;37(9):655-9. doi: 10.1007/s40264-014-0198-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验