National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.
BMC Mol Cell Biol. 2023 Mar 29;24(1):13. doi: 10.1186/s12860-023-00474-5.
Human accelerated regions (HARs) are short conserved genomic sequences that have acquired significantly more nucleotide substitutions than expected in the human lineage after divergence from chimpanzees. The fast evolution of HARs may reflect their roles in the origin of human-specific traits. A recent study has reported positively-selected single nucleotide variants (SNVs) within brain-exclusive human accelerated enhancers (BE-HAEs) hs1210 (forebrain), hs563 (hindbrain) and hs304 (midbrain/forebrain). By including data from archaic hominins, these SNVs were shown to be Homo sapiens-specific, residing within transcriptional factors binding sites (TFBSs) for SOX2 (hs1210), RUNX1/3 (hs563), and FOS/JUND (hs304). Although these findings suggest that the predicted modifications in TFBSs may have some role in present-day brain structure, work is required to verify the extent to which these changes translate into functional variation.
To start to fill this gap, we investigate the SOX2 SNV, with both forebrain expression and strong signal of positive selection in humans. We demonstrate that the HMG box of SOX2 binds in vitro with Homo sapiens-specific derived A-allele and ancestral T-allele carrying DNA sites in BE-HAE hs1210. Molecular docking and simulation analysis indicated highly favourable binding of HMG box with derived A-allele containing DNA site when compared to site carrying ancestral T-allele.
These results suggest that adoptive changes in TF affinity within BE-HAE hs1210 and other HAR enhancers in the evolutionary history of Homo sapiens might. have brought about changes in gene expression patterns and have functional consequences on forebrain formation and evolution.
The present study employ electrophoretic mobility shift assays (EMSA) and molecular docking and molecular dynamics simulations approaches.
人类加速区(HARs)是短的保守基因组序列,在人类与黑猩猩分化后,它们的核苷酸取代速度比预期的要快得多。HARs 的快速进化可能反映了它们在人类特有特征起源中的作用。最近的一项研究报告了在大脑特异性人类加速增强子(BE-HAEs)hs1210(前脑)、hs563(后脑)和 hs304(中脑/前脑)中存在正选择的单核苷酸变异(SNVs)。通过纳入古人类的数据,这些 SNVs 被证明是智人特有的,位于 SOX2(hs1210)、RUNX1/3(hs563)和 FOS/JUND(hs304)转录因子结合位点(TFBSs)内。虽然这些发现表明 TFBS 中的预测修饰可能对当前的大脑结构有一定的作用,但需要进一步研究这些变化在多大程度上转化为功能变异。
为了填补这一空白,我们研究了 SOX2 的 SNV,它在人类中既有前脑表达,又有强烈的正选择信号。我们证明了 SOX2 的 HMG 盒在体外与人特异性衍生的 A 等位基因和携带 BE-HAE hs1210 中祖先 T 等位基因的 DNA 位点结合。分子对接和模拟分析表明,与携带祖先 T 等位基因的 DNA 位点相比,HMG 盒与含有衍生 A 等位基因的 DNA 位点具有高度有利的结合。
这些结果表明,在人类进化史上,BE-HAE hs1210 和其他 HAR 增强子中 TF 亲和力的适应性变化可能导致了基因表达模式的变化,并对前脑的形成和进化产生了功能后果。
本研究采用电泳迁移率变动分析(EMSA)和分子对接及分子动力学模拟方法。