Optical Communications Laboratory, Ocean College, Zhejiang University, Zheda Road 1, Zhoushan 316021, China.
Ministry of Education Key Laboratory of Cognitive Radio and Information Processing, Guilin University of Electronic Technology, Guilin 541004, China.
Sensors (Basel). 2023 Mar 8;23(6):2946. doi: 10.3390/s23062946.
Non-Orthogonal Multiple Access (NOMA) has become a promising evolution with the emergence of fifth-generation (5G) and Beyond-5G (B5G) rollouts. The potentials of NOMA are to increase the number of users, the system's capacity, massive connectivity, and enhance the spectrum and energy efficiency in future communication scenarios. However, the practical deployment of NOMA is hindered by the inflexibility caused by the offline design paradigm and non-unified signal processing approaches of different NOMA schemes. The recent innovations and breakthroughs in deep learning (DL) methods have paved the way to adequately address these challenges. The DL-based NOMA can break these fundamental limits of conventional NOMA in several aspects, including throughput, bit-error-rate (BER), low latency, task scheduling, resource allocation, user pairing and other better performance characteristics. This article aims to provide firsthand knowledge of the prominence of NOMA and DL and surveys several DL-enabled NOMA systems. This study emphasizes Successive Interference Cancellation (SIC), Channel State Information (CSI), impulse noise (IN), channel estimation, power allocation, resource allocation, user fairness and transceiver design, and a few other parameters as key performance indicators of NOMA systems. In addition, we outline the integration of DL-based NOMA with several emerging technologies such as intelligent reflecting surfaces (IRS), mobile edge computing (MEC), simultaneous wireless and information power transfer (SWIPT), Orthogonal Frequency Division Multiplexing (OFDM), and multiple-input and multiple-output (MIMO). This study also highlights diverse, significant technical hindrances in DL-based NOMA systems. Finally, we identify some future research directions to shed light on paramount developments needed in existing systems as a probable to invigorate further contributions for DL-based NOMA system.
非正交多址接入(NOMA)随着第五代(5G)和超越 5G(B5G)的推出,已经成为一种很有前途的发展趋势。NOMA 的潜力在于增加用户数量、提高系统容量、实现大规模连接,并提高未来通信场景中的频谱和能量效率。然而,由于离线设计范式和不同 NOMA 方案的非统一信号处理方法所带来的灵活性限制,NOMA 的实际部署受到了阻碍。深度学习(DL)方法的最新创新和突破为解决这些挑战铺平了道路。基于 DL 的 NOMA 可以在多个方面突破传统 NOMA 的基本限制,包括吞吐量、误比特率(BER)、低延迟、任务调度、资源分配、用户配对和其他更好的性能特征。本文旨在提供 NOMA 和 DL 的重要性的第一手知识,并调查了几种基于 DL 的 NOMA 系统。本研究强调了连续干扰消除(SIC)、信道状态信息(CSI)、脉冲噪声(IN)、信道估计、功率分配、资源分配、用户公平性和收发机设计以及其他几个参数作为 NOMA 系统的关键性能指标。此外,我们还概述了基于 DL 的 NOMA 与智能反射表面(IRS)、移动边缘计算(MEC)、同时无线和信息功率传输(SWIPT)、正交频分复用(OFDM)和多输入多输出(MIMO)等几种新兴技术的集成。本研究还强调了基于 DL 的 NOMA 系统中存在的各种显著技术障碍。最后,我们确定了一些未来的研究方向,以阐明现有系统中需要的重要发展,这可能会激发对基于 DL 的 NOMA 系统的进一步贡献。