French-German Research Institute of Saint-Louis, 5 Rue du Général Casssagnou, 68300 Saint-Louis, France.
Institut de Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS), Université de Haute-Alsace, 2 Rue des Frères Lumière, 68100 Mulhouse, France.
Sensors (Basel). 2023 Mar 10;23(6):3025. doi: 10.3390/s23063025.
This paper presents a deep learning approach to estimate a projectile trajectory in a GNSS-denied environment. For this purpose, Long-Short-Term-Memories (LSTMs) are trained on projectile fire simulations. The network inputs are the embedded Inertial Measurement Unit (IMU) data, the magnetic field reference, flight parameters specific to the projectile and a time vector. This paper focuses on the influence of LSTM input data pre-processing, i.e., normalization and navigation frame rotation, leading to rescale 3D projectile data over similar variation ranges. In addition, the effect of the sensor error model on the estimation accuracy is analyzed. LSTM estimates are compared to a classical Dead-Reckoning algorithm, and the estimation accuracy is evaluated via multiple error criteria and the position errors at the impact point. Results, presented for a finned projectile, clearly show the Artificial Intelligence (AI) contribution, especially for the projectile position and velocity estimations. Indeed, the LSTM estimation errors are reduced compared to a classical navigation algorithm as well as to GNSS-guided finned projectiles.
本文提出了一种深度学习方法,用于在 GNSS 拒止环境中估计射弹轨迹。为此,在射弹射击模拟的基础上对长短期记忆网络(LSTM)进行了训练。网络输入包括嵌入式惯性测量单元(IMU)数据、磁场参考、与射弹特定的飞行参数以及时间向量。本文重点研究了 LSTM 输入数据预处理(即归一化和导航帧旋转)的影响,从而将 3D 射弹数据按相似的变化范围进行缩放。此外,还分析了传感器误差模型对估计精度的影响。将 LSTM 估计值与经典的航位推算算法进行了比较,并通过多个误差标准和撞击点的位置误差来评估估计精度。结果表明,对于带翼片的射弹,人工智能(AI)的贡献非常明显,特别是在射弹位置和速度估计方面。事实上,与经典导航算法以及基于 GNSS 的带翼片射弹相比,LSTM 的估计误差有所降低。