Suppr超能文献

基于 YOLOv6 的智慧城市环境改进型火灾检测方法。

A YOLOv6-Based Improved Fire Detection Approach for Smart City Environments.

机构信息

Department of Computer Engineering, Gachon University, Sujeong-Gu, Seongnam-Si 461-701, Gyeonggi-Do, Republic of Korea.

Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan.

出版信息

Sensors (Basel). 2023 Mar 16;23(6):3161. doi: 10.3390/s23063161.

Abstract

Authorities and policymakers in Korea have recently prioritized improving fire prevention and emergency response. Governments seek to enhance community safety for residents by constructing automated fire detection and identification systems. This study examined the efficacy of YOLOv6, a system for object identification running on an NVIDIA GPU platform, to identify fire-related items. Using metrics such as object identification speed, accuracy research, and time-sensitive real-world applications, we analyzed the influence of YOLOv6 on fire detection and identification efforts in Korea. We conducted trials using a fire dataset comprising 4000 photos collected through Google, YouTube, and other resources to evaluate the viability of YOLOv6 in fire recognition and detection tasks. According to the findings, YOLOv6's object identification performance was 0.98, with a typical recall of 0.96 and a precision of 0.83. The system achieved an MAE of 0.302%. These findings suggest that YOLOv6 is an effective technique for detecting and identifying fire-related items in photos in Korea. Multi-class object recognition using random forests, k-nearest neighbors, support vector, logistic regression, naive Bayes, and XGBoost was performed on the SFSC data to evaluate the system's capacity to identify fire-related objects. The results demonstrate that for fire-related objects, XGBoost achieved the highest object identification accuracy, with values of 0.717 and 0.767. This was followed by random forest, with values of 0.468 and 0.510. Finally, we tested YOLOv6 in a simulated fire evacuation scenario to gauge its practicality in emergencies. The results show that YOLOv6 can accurately identify fire-related items in real time within a response time of 0.66 s. Therefore, YOLOv6 is a viable option for fire detection and recognition in Korea. The XGBoost classifier provides the highest accuracy when attempting to identify objects, achieving remarkable results. Furthermore, the system accurately identifies fire-related objects while they are being detected in real-time. This makes YOLOv6 an effective tool to use in fire detection and identification initiatives.

摘要

韩国有关部门和决策者最近优先考虑改善火灾预防和应急响应。政府寻求通过构建自动化火灾检测和识别系统来提高居民社区的安全性。本研究检验了 YOLOv6 系统在 NVIDIA GPU 平台上运行的物体识别能力,以识别与火灾相关的物品。我们使用物体识别速度、准确性研究等指标,以及时间敏感的实际应用,分析了 YOLOv6 对韩国火灾检测和识别工作的影响。我们使用一个包含 4000 张照片的火灾数据集进行了试验,这些照片是通过谷歌、YouTube 和其他资源收集的,以评估 YOLOv6 在火灾识别和检测任务中的可行性。根据研究结果,YOLOv6 的物体识别性能为 0.98,典型召回率为 0.96,准确率为 0.83。该系统的 MAE 为 0.302%。这些发现表明,YOLOv6 是一种在韩国照片中检测和识别与火灾相关物品的有效技术。我们在 SFSC 数据上使用随机森林、k-最近邻、支持向量机、逻辑回归、朴素贝叶斯和 XGBoost 进行了多类物体识别,以评估系统识别与火灾相关物体的能力。结果表明,对于与火灾相关的物体,XGBoost 实现了最高的物体识别精度,分别为 0.717 和 0.767。其次是随机森林,分别为 0.468 和 0.510。最后,我们在模拟火灾疏散场景中测试了 YOLOv6,以评估其在紧急情况下的实用性。结果表明,YOLOv6 可以在 0.66 秒的响应时间内实时准确地识别与火灾相关的物品。因此,YOLOv6 是韩国火灾检测和识别的一种可行选择。XGBoost 分类器在尝试识别物体时提供了最高的精度,取得了显著的成果。此外,该系统在实时检测过程中能够准确识别与火灾相关的物体。这使得 YOLOv6 成为火灾检测和识别计划中的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cc2/10051218/4bd18569b22a/sensors-23-03161-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验