Suppr超能文献

基于 Detectron2 模型和深度学习的改进森林火灾检测方法。

An Improved Forest Fire Detection Method Based on the Detectron2 Model and a Deep Learning Approach.

机构信息

Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea.

Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan.

出版信息

Sensors (Basel). 2023 Jan 29;23(3):1512. doi: 10.3390/s23031512.

Abstract

With an increase in both global warming and the human population, forest fires have become a major global concern. This can lead to climatic shifts and the greenhouse effect, among other adverse outcomes. Surprisingly, human activities have caused a disproportionate number of forest fires. Fast detection with high accuracy is the key to controlling this unexpected event. To address this, we proposed an improved forest fire detection method to classify fires based on a new version of the Detectron2 platform (a ground-up rewrite of the Detectron library) using deep learning approaches. Furthermore, a custom dataset was created and labeled for the training model, and it achieved higher precision than the other models. This robust result was achieved by improving the Detectron2 model in various experimental scenarios with a custom dataset and 5200 images. The proposed model can detect small fires over long distances during the day and night. The advantage of using the Detectron2 algorithm is its long-distance detection of the object of interest. The experimental results proved that the proposed forest fire detection method successfully detected fires with an improved precision of 99.3%.

摘要

随着全球变暖与人口增长,森林火灾已经成为全球主要关注的问题之一。这可能导致气候转变和温室效应等不良后果。令人惊讶的是,森林火灾的发生主要是由人类活动引起的。快速、高精度的检测是控制这一突发事件的关键。为了解决这个问题,我们提出了一种改进的森林火灾检测方法,该方法基于深度学习方法,使用新版本的 Detectron2 平台(Detectron 库的全新重写版本)对火灾进行分类。此外,我们创建并标记了一个自定义数据集来训练模型,并且它比其他模型具有更高的精度。通过在各种实验场景中使用自定义数据集和 5200 张图像改进 Detectron2 模型,实现了这一稳健的结果。该模型可以在白天和黑夜远距离检测小火。使用 Detectron2 算法的优势在于可以远距离检测目标。实验结果证明,所提出的森林火灾检测方法成功地检测到了火灾,精度提高到了 99.3%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e76/9920160/05370bba3f7c/sensors-23-01512-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验