Suppr超能文献

基于轨迹聚类的室内人体运动异常检测。

Trajectory Clustering-Based Anomaly Detection in Indoor Human Movement.

机构信息

Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea.

出版信息

Sensors (Basel). 2023 Mar 21;23(6):3318. doi: 10.3390/s23063318.

Abstract

Human movement anomalies in indoor spaces commonly involve urgent situations, such as security threats, accidents, and fires. This paper proposes a two-phase framework for detecting indoor human trajectory anomalies based on density-based spatial clustering of applications with noise (DBSCAN). The first phase of the framework groups datasets into clusters. In the second phase, the abnormality of a new trajectory is checked. A new metric called the longest common sub-sequence using indoor walking distance and semantic label (LCSS_IS) is proposed to calculate the similarity between trajectories, extending from the longest common sub-sequence (LCSS). Moreover, a DBSCAN cluster validity index (DCVI) is proposed to improve the trajectory clustering performance. The DCVI is used to choose the epsilon parameter for DBSCAN. The proposed method is evaluated using two real trajectory datasets: MIT Badge and sCREEN. The experimental results show that the proposed method effectively detects human trajectory anomalies in indoor spaces. With the MIT Badge dataset, the proposed method achieves 89.03% in terms of F1-score for hypothesized anomalies and above 93% for all synthesized anomalies. In the sCREEN dataset, the proposed method also achieves impressive results in F1-score on synthesized anomalies: 89.92% for rare location visit anomalies ( = 0.5) and 93.63% for other anomalies.

摘要

室内空间中的人类运动异常通常涉及紧急情况,例如安全威胁、事故和火灾。本文提出了一种基于基于密度的带有噪声的应用空间聚类(DBSCAN)的室内人体轨迹异常检测的两阶段框架。该框架的第一阶段将数据集分组到聚类中。在第二阶段,检查新轨迹的异常情况。提出了一种新的度量标准,称为基于室内步行距离和语义标签的最长公共子序列(LCSS_IS),用于计算轨迹之间的相似度,从最长公共子序列(LCSS)扩展而来。此外,还提出了一种 DBSCAN 聚类有效性指数(DCVI),以提高轨迹聚类性能。DCVI 用于为 DBSCAN 选择 epsilon 参数。该方法使用两个真实轨迹数据集:MIT Badge 和 sCREEN 进行评估。实验结果表明,该方法能够有效地检测室内空间中的人体轨迹异常。在 MIT Badge 数据集上,对于假设的异常,所提出的方法在 F1 得分方面达到了 89.03%,对于所有合成的异常,F1 得分都超过了 93%。在 sCREEN 数据集上,对于罕见位置访问异常( = 0.5)和其他异常,所提出的方法在 F1 得分方面也取得了令人印象深刻的结果:分别为 89.92%和 93.63%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c84b/10058538/a4c100d5be6f/sensors-23-03318-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验